ProMass for MassLynx Overview and Preliminary User Guide

Novatia LLC

Overview

- General info about ProMass
- Features
- Basics of how ProMass works
- Example Spectra
- Manual Deconvolution with ProMass
- Deconvolution Parameters
- Automated Deconvolution with ProMass
- Examples

ProMass Features

- MassLynx layered application
- Uses Novatia's ZNova algorithm for "artifact-free" charge deconvolution of biomolecule ESI mass spectra
- Allows for automated deconvolution of spectra in LC/MS data from the MassLynx sample list
- Produces web-based results format including chromatograms, spectra, color-coded summary, and tabular results
- Works with oligonucleotides, proteins, peptides, etc.
- Applications include:
 - High throughput (HT) oligonucleotide synthesis QC
 - Detailed LCMS oligonucleotide impurity/degradant profiling, and metabolite id
 - Detailed intact protein characterization impurities, degs, PTM's
 - HT intact protein expression and bioprocess monitoring

Why we need charge deconvolution

Unfortunately mass spectrometers measure m/z NOT Mass: Mass (M) ≠ m/z

But:

m/z = (M + zA)/z

Where:

A = mass of adduct providing charge

z = number of charges

Given 2 adjacent m/z peaks (mz₁ and mz₂) in a charge series of unknown charges (z_1 and z_2), you can use algebra:

$$z_1 = z_2 + 1$$

 $z_2 = (mz_1 - A)/(mz_2 - mz_1)$

You would go insane if you had to do this for every spectrum!

ZNova Deconvolution Algorithm

- *ZNova* is the charge deconvolution algorithm used by the ProMass software
- ZNova uses a "component deconvolution" approach which tests and determines the charge of every peak in the raw mass spectrum (Zhang & Marshall, JASMS 1998)
- *ZNova* determines charge by looking at the series of contiguous charge states (not isotope spacing)
- *ZNova* uses a simple intensity-based scoring algorithm to assign charge based on the highest scoring series of peaks
- ZNova has built-in signal processing techniques to improve reliability of deconvolution even on noisy data
 - Automatic baseline removal
 - Decentroiding of centroid input data
 - Smoothing prior to decon
 - Normalization of scoring based on observed/predicted peaks
- ZNova exhibits low incidence of deconvolution artifacts unlike Mann algorithm
- Clean deconvolutions allow reliable confirmation of target components

ProMass Deconvolution of Yeast Enolase (MW 46670.9) Example of Artifact-free Deconvolution

Novatia

Comparison of Deconvolution Algorithms

heavy / light chain IgG mixture

How ZNova Deconvolution Works

Example: Test all z values for m/z 749 in the spectrum below Assume z = -2 (MW 1500) : -1 = 1499, score = 2 Assume z = -3 (MW 2250) : -4 = 561.5, -2 = 1124, -1 = 2249, score = 1 Assume z = -4 (MW 3000) : -5 = 599, -3 = 999, -2 = 1499, score = 4 Assume z = -5 (MW 3750) : -6 = 624, -4 = 936.5, -3 = 1249, score = 1

- Scoring based on accumulated log(S/N) of all peaks in a charge series.
- Highest scoring test charge state represents the correct charge state (z = -4, above).
- Once correct charges are determined, only those signals are transformed to the zerocharge (deconvoluted) spectrum.
- The process is repeated until all m/z values are processed.

ProMass Deconvolution of Low S/N ESI Data

ProMass Deconvolution of Peptide Mixtures

ProMass works on low charge state spectra too

ProMass Deconvolution of Hemoglobin Mixture

Example of overlapping, closely-related mixture components alpha & beta chains, bovine & porcine proteins

ProMass Deconvolution of Coeluting Components

Example of overlapping mixture components over wide MW range mixture is from supernatant from precipitated human serum

ProMass HomePage

ZNova Parameter Setup And Manual Processing

Browse the latest *automated* processing event

ProMass Deconvolution Modes

Manual Deconvolution

- Interactive processing of individual spectra copied from the MassLynx Spectrum application
- Fast processing via a simple copy/paste operation
- Very simple web-based spectrum report output
- Interactive browsing with ProMass DecView
- Automated Deconvolution
 - Processing driven from MassLynx sample list
 - Allows deconvolution of entire LC/MS data sets
 - Full reporting of targeted components in web-based report
 - ProMass parameter file for deconvolution parameters
 - ProMassBridge parameter file for chromatogram peak-picking and spectral pre-processing parameters
 - Highly detailed web browser-based summary and sample reports

ProMass Manual Deconvolution Mode

- Manual deconvolution mode is performed by "copying" a spectrum from the MassLynx Spectrum window and "pasting" the data into the ProMass application.
- Manual deconvolution mode is useful for *tuning* ProMass parameters or for quickly deconvoluting a spectrum from a selected LCMS chromatogram peak.
- Manual deconvolution *does not* include the advanced reporting features that are available in the automated deconvolution mode.

Preparing MassLynx for Manual Deconvolution

Setup MassLynx for spectrum export

- In the MassLynx spectrum window, ensure that 4 decimal places are being displayed on spectrum annotated masses
- If not, select Display | Peak Annotation...
- Set decimal places to 4 and click OK
- MassLynx should remember these settings

Spectrum Peak Ann	otation 🛛 🚺
Annotation Type	
Decimal <u>P</u> laces	4 🗸
✓ Mass	Belta Mass 0.00
Mass <u>E</u> rror	✓ Ion Series <u>L</u> abel <u>S</u> eries
Component Label	Digest Fragment Label
Intensity	<u>T</u> ransition State
Intensity Error	🔽 Pe <u>a</u> k Flags
Annotation Threshold	0.0
O Intensity	0
Le <u>v</u> el	High 💌
Uncertainties	
Mass <u>U</u> ncertainty	Units mDa 🗸
	OK Cancel

ProMass Manual Deconvolution Overview

- From the MassLynx Spectrum application, display the desired spectrum.
- If more than one spectrum is displayed, click the target spectrum to select it.
- Click the Copy button on the MassLynx Spectrum toolbar, or click Edit | Copy Spectrum List.
- Launch ProMass and click Build Params
- Set or restore a default set of ProMass parameters
 - New users can click the defaults button on the toolbar and select an appropriate molecule type.
- Click the Paste/Process spectrum button
- After deconvolution is complete, ProMass results are displayed in the default web browser window

ProMass Basic Deconvolution Settings

Ruild an O	🛞 Build ZNova Parameter File	? 🔀
Params	Parameter File C:\Program Files\ProMassLynx\temp.params	
Mova Carlos	Basic Deconvolution Advanced Deconvolution Results Reporting	
Default Parameter Setti Default Molecule Types Peptide Peptide Clarge Protein Oligonucleotide Oligo G Small Protein OK Cancel	Step 1: Click the Defaults button on the toolbar to select a default parameter set. Select Input m/z Range (u) Select Input m/z Range (u) From To Step 2: Select Output Mass Range (Da) From Sol From Sol	
n Basic deconvolution mode, one can easily process spectra by	Step 3: To process a spectrum manually, copy the spectrum data to the clipboard, then click the clipboard button on the toolbar. Help me do this!	
estoring a set of default parameters	Step 4: 📕 (Optional) Save your parameter settings using either the Save or Save As buttons on the toolbar.	

ranges.

and setting input and output mass

Manual Processing Example

Oligonucleotide from LCMS chromatogram

8.70

8 60

8.80

8.90

9.00

9.10

9.20

9.30

8.50

Retention time window : 0.1426

click and drag across the peak to combine (add) scans for the desired peak in the LCMS chromatogram.

Step 2: After the desired spectrum is displayed, click the copy button. Note: you can preprocess the spectrum in MassLynx to remove baseline or subtract background before exporting data to ProMass.

Step 3: Launch ProMass and click Build Params button.

9.50

8.9407 9.0833

9.40

Manual Processing Example, continued...

Oligonucleotide from LCMS chromatogram

Step 4: From the *Basic Deconvolution* tab set the input and output mass ranges. Select the ion polarity mode, then click the "Paste" button.

Build ZNova Pa	arameter File
Arameter File C:\Program Files\Primaries asic Deconvolution	MassLynx/Vemp.PARAMS
Step 1:	Click the Defaults button on the toolbar to select a default parameter set.
Step 2:	Select Input m/z Range (u) Select Ion Polarity From 750 ± 10 2600 ± Select Output Mass Range (Da) C Pos (+) From 500 ± 10 7000 ±
Step 3:	To process a spectrum manually, copy the spectrum data to the clipboard, then click the clipboard button on the toolbar. Help me do this!
Step 4:	(Optional) Save your parameter settings using either the Save or Save As buttons on the toolbar.

1				
z = 2514.7 g Mass = 5	7, z = 2, Mass = 5 031.2 +- 0.2, Sc	5031.4, ore = 2.25, Int = 134		
z = 2476.2 g Mass = 4	2, z = 2, Mass = - 1954.4 +- 0.2, Sc	4954.4, ore = 2.79, Int = 524		
z = 2480.6	i, z = 2, Mass = - 1963 1 +- 0 1 Sc	4963.2, 4963.2, $10t = 188$		
2 = 2468.9	$r_{100} = 2, Mass = 1000 c + 0.2 c + 0.0 c +$	4939.8,		
ducing in	nput spectrum gra	phic C:\MassLynx\ProMas	s_test\promass_results\aug30_	
ducing ou ults\aug3	itput deconvolute RNAi1_1_May272	d spectrum graphic C:\M 009111905.dec.png	assLynx\ProMass_test\promass_	
oducing ou cest\proma wa proces	atput deconvolute ass_results\aug30 asing time (sec):	d zoomed display spectr _RNAi1_1_May27200911190 _5_59	um graphic C:\MassLynx\ProMas 15.zdec.png	
ating HTM 2009111909	L report: C:\Mass Lhtml	sLynx\ProMass_test\prom	ass_results\aug30_RNAi1_1_May	
111905.109	file. C. Massign. j.txt	X Pronass_test \promass_	Nesults augue MARIL 1 Jay2125	
ug30_RNAi1_1 Edit ⊻ew H	J_May272009111905.html - igtory Bookmarks Iools Help	Mozilla Firefox	حا	ل ال
) . C	🗙 🏠 📄 file:///C:/Mass	sLynx/ProMass_test/promass_results/aug30_RNAi:	1_1_May272009111905.html#top ☆ ・ 💽 • Google	
nost Visited Ҏ Ge	atting Started 流 Latest Headlines			
<]		DNAil 1 May 2700		
w File: C:\Mas	assLynx\ProMass_test\prom ssLynx\ProMass_test\aug30_	ass_results\aug3u_KNAI1_1_May2720 _RNAi1_1.raw	09111905.htmi	
scription: 2.1	(50 ACQ18 0.2mL/min 20to 4	0B 10 min; A:15:400 TEA/HFIP, B:50%	A, 50%MeOH 75um RNAi1 100 pmol 🛛 🛛 👯	
ex Scan: 1055 h Code: 08242	i 2007 oliaos		ProMass	
D Code, 552	007_01905			
		Summary Report		
	Base Peak Mass (Da)	Intensity	Spectral Quality	
			*	
<] [Top] [De	convolution] [Zoom Deconv	olution] [Deconvolution Peak Report]	[View Data] [Log File]	
I Mass Spectr	um:			
		4		
		4		
6.3E+003 ₁		S.		
-			æ 9	
-			7.73	
-			<u>ស</u>	
5.1E+003-				
5.1E+003-				
5.1E+003- -				
5.1E+003- - - 3.8E+003-				
5.1E+003- - - 3.8E+003-				
5.1E+003- - - 3.8E+003-				
5.1E+003- - - 3.8E+003- - - - - - - - - - - - - - - - - - -	ε ξ φ_	¢φ	w	
5.1E+003- 3.8E+003- 1 2.5E+003-	-7 A -3 A 83.1 -6 A	ه ب د د د د د	9 9 1	
5.1E+003- 3.8E+003- 1 2.5E+003-	— 812.0 -8 А 20127 А — 1083.16 А	4 S- 6 667 -	2011년 - 3 문	
5.1E+003- 3.8E+003- 11 2.5E+003- 1				
5.1E+003- 3.8E+003- 2.5E+003- 1.3E+003-	ы 8- 1- 1- 6 м 	9 G- 6 (627	3 €- 1,102	
5.1E+003- 3.8E+003- 1.3E+003- 1.3E+003-	6 - 7 Е - 2002 9 А	10001 - 4 P	2011.i -3 €	
5.1E+003- 3.8E+003- 1.3E+003- 1.3E+003-	А Ф- 0.230 А. 7 - 5.282 - - 7 - 5.286 А. 1.6801	100-10-0-10 100-11-4 100-11-4 10 100-11-4 10 10-11-11-11-11-11-11-11-11-11-11-11-11-1	3 P F 1702	
5.1E+003- 3.8E+003- 51 3.8E+003- 1.3E+003- 1.3E+003- 0.0E+000+	1120 1120 - 9 в 1120 - 1 в	т. 9 1490 1960	2230 2600	
5.1E+003- 3.8E+003- 5.2E+003- 1.3E+003- 0.0E+003- 75	в 9-1-16 1200-16 1200	¢ ° ° ° ° ° ° ° ° ° ° ° ° °	2230 2600	
5.1E+003- 3.8E+003- 2.5E+003- 1.3E+003- 0.0E+000- 750- 0.0E+00- 0.0E+00- 0.0	в 9 - 1120 - 9 и 1083-1 - 9 - 9 и 1083-1 - 9 - 1083-1 - 10	φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ	2230 2600	

Processing: During processing, the ProMass console window is displayed (or may run minimized in the task bar).

Results: After processing is complete, the ProMass spectrum report is automatically launched in the default web browser.

Manual Processing Example, continued

Oligonucleotide from LCMS chromatogram

Done

Done

File

Interactive Viewing with the ProMass Viewer

ProMass DecView Viewer Tips

- Top spectrum is always deconvoluted, bottom is ESI
- Click a spectrum pane to make it active for zooming, unzooming, etc.
- Click on a deconvoluted mass label to show charge states for the selected mass – useful for validating results.
- See ProMass DecView help for more information.

ProMass Advanced Decon Settings

🔋 Build ZNova Parameter File 🛛 🔹 👔				
Parameter File				
C:\Program Files\ProMassLynx\temp.params				
Pasia Deconvolution Advanced Deconvolution Posulta	Paparting]			
Basic Deconvolution [Advanced Deconvolution] Results				
Masses	Deconvolution			
From To To	Peak Width 3			
	Merce Width 0.2			
Output Mass Range (Da)	Minimum Score 2			
From 500 To 20000	Normalize Scores			
🔲 Use 0.1 Da Mass Step Size	Comprehensive			
	Deconvolution			
Adduct Ion Mass	Centroid Output 🦵			
m/z Exclusion List				
	Smoothing			
Baseline Bemoval	Smooth Width 5			
	Num of Smooths 2			
<u> </u> 0.7 ♥ Un				
_ Low/Normal	Noise Threshold			
Medium	Auto 🔽 S/N 🛛 2			
J - High	%Relative Intensity			

Parameters Guide:

- Set input/output mass ranges
- Use 0.1 Da step size for < 5000 MW
- Adduct Ion Mass -1.0079 for negative ions

•Adjust *Baseline Removal* to get a flat baseline (look at raw ESI spectrum in ProMass report)

- Set *Peak Width* to match m/z peak width (at base) in original mass spectrum
- *Merge Width* ~10-20% of *Peak Width,* has an effect on reported centroided masses
- Use *Comprehensive* decon for most applications where there could be mixture overlap
- Most other settings can be set using defaults

ProMass Results Settings

🏨 Build ZNova Parameter File	? 💈
😂 🖃 💊 🛃 🍋	\checkmark
Parameter File	
C:\Program Files\ProMassLynx\temp.params	
Basic Deconvolution Advanced Deconvolution Results R	eporting
Save Results To	Graphics
✓ Save results in raw data directory	Image Format png
Results Directory: C:\Program Files\ProMassLynx\results	Graph Size (pixels)
	X 800 Y 600
Report Templates	Output Zoom Bange (Dia)
Manual Processing Report Template	750
L: \Program Files \ProMassLynx \templates \manual_	750
Auto Processing Report Template	Logo File Name
U:\Program Files\ProMassLynx\templates\auto_pro	promass.gif
Auto Processing Summary Template	
C:\Program Files\ProMassLynx\templates\summary	
 Spectral Quality Indicators 	
Low Score 2 (x Minimum Score) (c	ow Intensity 50
Deconvoluted Spectrum Labeling	
Label Threshold, % 1 O Data Po	oints 💿 Components

What the settings do:

- Determine where results are stored
- Customize the graphics output size, image format, logo.
- Allow user to set the width of the zoomed spectrum, or to set an explicit zoom range
- Specify report template for web-based output
- Spectral quality indicator settings for flagging low intensity or low ZNova score results
- Set labeling parameters use *Data Points* labeling mode if *Components* labeling does not give you enough detail, especially when a wide peak width setting is used.

Deconvoluting Difficult Spectra

- Most (>80%) spectra can be deconvoluted successfully with "default" settings
 - Try default settings first, then modify as needed
- Noisy spectra, complicated mixtures, or spectra with a high baseline may require some parameter adjustment
 - Adequately remove the baseline noise
 - Choose the correct peak width
 - For very noisy spectra, narrow your deconvolution range to focus the algorithm to where you expect masses to be present.
 - Noisy spectra may require manually setting the noise threshold
- A *"blob"* spectrum with a peak at every mass may be impossible to deconvolute with any algorithm
- Use ProMass viewer to validate that observed charge series are real

ProMass Automated Processing Workflow Overview

Novatia

ProMass Automated Processing

Basic Requirements:

- MassLynx sample list with associated data file(s)
- Correct sample list fields formatted for ProMass processing
- ProMassBridge software installed, process_kernel.exe executable file specified in the sample list "Process" field.
- ProMassBridge parameter file
 - Text file (.mlp or .olp) edited with notepad or other text editor
 - For setting various parameters for chromatogram peak selection and preprocessing (e.g., smoothing, baseline subtraction, LockSpray, etc.)
- Optional ZNova parameter file specified in "ZNova Params" sample list field for ProMass deconvolution settings
- Optional Target Mass settings specified in "Target Info" sample list field
- Optional sequence for oligonucleotide or protein in "Sequence" sample list field.

ProMass Sample List Fields

ProMass requires certain sample list fields to be present to allow for automated processing. The display above shows how the fields should be mapped. This dialog is activated by right-clicking a sample list column heading and selecting *Customize Display...*

To load the ProMass sample list format, select *Samples* | *Format* | *Load...* as shown above from the sample list and browse for the ProMass sample list format type. Load promass.fmt from the ProMassLynx install directory.

Field Properties		×
<u>F</u> ield ID:	COMPOUND_A	OK
Field <u>n</u> ame:	Sequence	Cancel
Alignment:	Left	

The individual sample list fields can be edited manually if you do not have the ProMass sample list format. The fields *must* be mapped as shown at the above left. To edit a column heading, right-click the heading and select *Properties*...The ordering of the fields is not important.

Configuring MassLynx Sample List for ProMass

ole	_list.SPL				
	Shortcut 🗟 Queue 🐼 Status				
		Queue Is Emp	ity		
эс	trum Chromatogram Map Edit - Samples -				
	Process	Parameter File	Sequence	Target Info	ZNova Params
	C:\Program Files\Waters\ProMassBridge\lib\process_kernel.exe	C:\Program Files\Waters\ProMassBridge\\pars RNAi.mlp	rUrUrC rUrGrU rArArU rCrUrC rUrUrG rUrCrU rATT	sequence=idt, ladder=5', termini = no phos	C:\P\masslynx.params -1 2500 -F 500 -L +1000
	C:\Program Files\Waters\ProMassBridge\lib\process_kernel.exe	C:\Program Files\Waters\ProMassBridge\yong_new.mlp	rArUrGmGmAmAmGmGfCmAfUfCmGfCfCfCfUmG	sequence=oligo, ladder=5', termini = no phos	C:\Progr\yong.params -f 500 -F 1000 -L +1000
	C:\Program Files\Waters\ProMassBridge\lib\process_kernel.exe	C:\Program Files\Waters\ProMassBridge\param\sqd.mlp	rurcig i urcia iargic igiaru iuraic iararg igt	sequence=oligo, ladder=5'	C:\Progra\sqd.params -f 500 -F 1000 -L +1000
	C:\Program Files\Waters\ProMassBridge\lib\process_kernel.exe	C:\Program Files\Waters\ProMassBridge\para\PDE.mlp	TTDI DIAIAN DIAIU UIAIDI DIDIAA ANDIUI DIDIAI	sequence=oligo, ladder=internal, termini=cyclic phos	C:\Prog\cyclic.params -1 2500 -F 500 -L +1000
	C:\Program Files\Waters\ProMassBridge\lib\process_kernel.exe	C:\Program Files\Waters\ProMassBridge\pa\GEM91.mlp	C*T*C* T*C*G* C*A*C* C*C*A* T*C*T* C*T*C* T*	sequence=oligo. ladder=5'	C:\P\masslynx.params -1 2800 -F 500 -L +1000
					,
					1111

• Required Fields: File Name, Vial (Bottle), Process (ProMassBridge executable), Parameter File (ProMassBridge parameter file)

• ZNova Params (optional): for entering ProMass deconvolution parameters

- if not specified, default ProMass parameter set is used (znova.params in ProMassLynx\ZNova program directory)
- "in-place" modifications to parameters can also be entered as command line arguments (e.g., -F, -L to set output decon mass range)

• Sequence (optional): amino acid or nucleotide sequence

- For input sequences, masses are automatically calculated and treated as "target masses"
- Sequence type must be specified in Target Info field (e.g., sequence=oligo)
- Oligo sequences are entered in IDT base notation format (<u>http://www.idtdna.com/analyzer/Applications/OligoAnalyzer/</u>), allowing mixed DNA, RNA, LNA, phosphorothioates, 2-O-methyl RNA, 2-fluoro-RNA, and other custom modified or user-specified residues.

• Target Info (optional): information about target masses

- Specify Sequence string type (e.g., sequence=oligo)
- Specify other search directives (e.g., ladder=5', to search for 5' oligo sequence failures)
- Enter explicit comma-separated target masses

Shutdown Disabled

0:0

Idle

ProMassBridge Parameter File

〕 test.mlp - Notepad

<u>File E</u>dit F<u>o</u>rmat <u>V</u>iew <u>H</u>elp

[PROMASS PREPROCESS] ;; ProMassLynx installation directory ProMassLynx Directory=C:\Program Files\ProMassLynx

;; Retention time range to processSet to limit range of processing, Start Retention Time=0 End Retention Time=0 chromatogram

;; Retention time range units ;; 0 – mins ;; 1 – scans Time in Scans=0

Default range time in minutes

;; Function containing raw data to process **Function 1 is MS data**Function=1

;; Specify lockspray function number or ;; -1 - disable lockmass correction

;; 0 - automatic function selection

Set to '0' to enable Lockspray fxn

- O X

LockSpray Function=-1

;; Smooth and subtract mass spectra?

;; 0 - disable ;; 1 - enable Subtract=1 Smooth=0 Subtract=1 Subtra

;;Subtract normalized background spectrum ;;Toggle subtraction Background=1 **Set to '1' to enable bac**

Set to '1' to enable background subtraction

;;Set range units ;; 0 – mins ;; 1 – scans Background in Scans=0

Default range time in minutes

;;Start and end of background range Background Start=2 Background End=2.5 Subtraction • The ProMassBridge parameter file sets options for chromatogram peak picking and spectral preprocessing.

- The file is a text file that is edited with a text editor such as Notepad.
- Comments are specified with the semicolon (;) character.
- Options for smoothing, spectral subtraction (baseline removal), background subtraction, and LockSpray (for TOF data) processing are available.

ProMassBridge Parameter File, continued

^

] test.mlp - Notepad

<u>File E</u>dit F<u>o</u>rmat <u>V</u>iew <u>H</u>elp

[CHROMATOGRAM] ;; Apex 3D peak detection parameters as in MassLynx

Smooth Iterations=2 smooth window=3 Auto Peak To Peak Baseline Noise=1 Peak To Peak Baseline Noise=20 Auto Peak width at 5% Height=1 Peak width at 5% Height=0.2 Baseline Start Threshold=0 Baseline End Threshold=0.5 Detect Shoulders=0

;; Use TIC or BPI for peak detection? ;; 0 - TIC ;; 1 - BPI Use BPI=0

;; Spectrum smooth parameters if enabled [SMOOTH PROMASS PREPROCESS] ; Smooth Type 2 means Savitzky Golay. Smooth Type=2 Smooth width=5 Number of Smooths=2

;; Spectrum subtract parameters if enabled [BACKSUB PROMASS PREPROCESS] Type1 Percent Below=65 Polynomial order=5 Tolerance=0.01 Flatten Edges=1

;; Lockmass parameters [MASSMEASURE PROMASS LOCKSPRAY PROCESS] Do Subtract=0 Do Smooth=0

[BACKSUB PROMASS LOCKSPRAY PROCESS] Type=1 Percent Below=25 Polynomial order=5 Tolerance=0.01

[SMOOTH PROMASS LOCKSPRAY PROCESS] Smooth Type=2 Smooth width=3 Number of Smooths=2

[TOFACM PROMASS LOCKSPRAY PROCESS] Lock Spray Scans=5 Lock Mass=0.0 Mass window=0.1 NP Multiplier=1.0 Resolution=9000.0

[CENTER PROMASS LOCKSPRAY PROCESS] Centroiding Type=2 Top Percent=80.0 Use Areas=1 Min Peak Width Channels=4 Apex 3D peak detn parameters -defaults work well

Either TIC or base peak chromatogram can be used for processing

Spectrum smoothing options if enabled.

Spectrum baseline subtraction

These settings are available only when LockSpray processing is enabled.

- Peak detection is done with Apex 3D algorithm – use defaults with ProMass reporting parameter settings to limit number of peaks processed
- Either base peak (BPI) or TIC chromatograms may be used.
- Use high baseline subtraction settings for TOF data, as shown at left
- LockSpray parameters can be ignored unless LockSpray processing has been enabled.

ProMass Reporting Settings

🀞 Build ZNova Parameter File	2 🔀
产 日 📱 🔌 🛃 📢	ॏ १ 🗞 🗸
Parameter File	
C:\Program Files\ProMassLynx\temp.params	
Basic Deconvolution Advanced Deconvolution	Results Reporting
Target Mass Options	Chromatogram Options
Avg Mono	Display Entire Chromatogram
Mass Tolerance % 0.02 Min Tolerance (Da) 3 Min Intensity 100 Impurity Threshold Cumulative 30 % Report When Target Not Found Base Peak Use Excel Summary	Chrom Peak Selection Thresholds Limit Peaks by Area % Limit Peaks by Chrom Peak Height Chrom Peak Height Limit Number of Peaks
Sample Plate View Show Sample Plate Rows 8 X Columns Sampling Direction Across	12

What the settings do:

- Reporting Tab settings ONLY affect automated processing report – does nothing to manual processing report
- Determines Target Mass tolerance and minimum intensity for a confirmed target mass match
- Impurity levels which demote "green" to "purple" result color code
- Enables Sample Plate View or Excel Summary
- Set labeling behavior of chromatogram traces to display entire chromatogram or only processed range set with ProMassBridge settings
- Allows for setting of thresholds for chromatographic peaks selected for deconvolution, to limit peaks by area %, peak height or total number of peaks

ProMass Processing and Vial Referencing

🏽 Build ZNova Parameter File	? 🔀
Parameter File C:\Program Files\ProMassLynx\temp.params	
Basic Deconvolution Advanced Deconvolution Target Mass Options Mass Type Avg Mono Mass Tolerance % 0.02 Min Tolerance (Da) 3 Min Intensity 100 Impurity Threshold Cumulative 30 % Report When Target Not Found Use Excel Summary Sample Plate View Show Sample Plate Rows 8 × Columns 1 Sampling Direction Across	Results Heporting Chromatogram Options ✓ Display Entire Chromatogram Chrom Peak Selection Thresholds Limit Peaks by Area % Úmit Peaks by Chrom Peak Height Úmit Peaks by Limit Number of Peaks Í

- MassLynx allows many different types of vial referencing schemes when setting up an autosampler.
- In order to populate the ProMass plate view correctly, you should use Sequential Discontinuous vial referencing in MassLynx.
- If you select the *Horizonal Priority* sampling in MassLynx, sampling will occur across rows, otherwise sampling will occur down (by column).
- In the ProMass parameter file, select a Sampling Direction of Across when MassLynx Horizontal Priority is enabled.
 Otherwise, set the ProMass Sampling Direction to Down.
- ProMass can translate vial numbers consisting of just vial numbers (e.g., 1, 2, 3...), tray: vial format (e.g., 1:1, 1:2, 1:3...), and tray:96 well position format (e.g., 1:A1, 1:A2, 1:A3...).
- Create a new raw data directory for each 96-well plate to prevent the ProMass plate view from being overwritten by identical vial numbers.
- See the MassLynx help for more information about vial referencing.

Auto Processing with ProMass

🝸 Ma	sLynx - Default - new_promass	_sample	ə_list.SPL					🛛
File	view Run Help							* /
2	• 🗅 🖻 🖬 🖊 🕨		🚺 🖉 Shortcut 🗟 Queue 🕼 Status					
	Y			Queue Is Emp	ty			
Ħ	Tools	Spec	trum Chromatogram Map Edit - Samples	•				
10	10013		Process	Parameter File	Sequence	Target Info	ZNova Params	^
5		1	C:\Program Files\Waters\ProMassBridge\lib\process_kernel.exe	C:\Program Files\Waters\ProMassBridge\\pars RNAi.mlp	IUIUIC IUIGIU IAIAIU ICIUIC IUIUIG IUICIU IATT	sequence=idt, ladder=5', termini = no phos	C:\P\masslynx.params -1 2500 -F 500 -L +11	000
suj	54	2	C:\Program Files\Waters\ProMassBridge\lib\process_kernel.exe	C:\Program Files\Waters\ProMassBridge\yong_new.mlp	cArUrGmGmAmAmGmGfCmAfUfCmGfCfCfCfUmG	sequence=oligo, ladder=5', termini = no phos	C:\Progr\yong.params -f 500 -F 1000 -L +11	000
-	Options	3	C:\Program Files\Waters\ProMassBridge\lib\process_kernel.exe	C:\Program Files\Waters\ProMassBridge\param\sqd.mlp	IUICIG IUICIA IAIGIC IGIAIU IUIAIC IAIAIG IGT	sequence=oligo, ladder=5'	C:\Progra\sqd.params -f 500 -F 1000 -L +11	000
5		4	C:\Program Files\Waters\ProMassBridge\lib\process_kernel.exe	C:\Program Files\Waters\ProMassBridge\para\PDE.mlp	rUrCrG rUrCrA tArGrC rGtArU rUrArC tAtArG rGTT	sequence=oligo, ladder=internal, termini=cyclic phos	C:\Prog\cyclic.params -I 2500 -F 500 -L +11	000
P	A	5	C:\Program Files\Waters\ProMassBridge\lib\process_kernel.exe	C:\Program Files\Waters\ProMassBridge\pa\GEM91.mlp	C*T*C* T*C*G* C*A*C* C*C*A* T*C*T* C*T*C* T*	sequence=oligo. ladder=5'	C:\P\masslynx.params -I 2800 -F 500 -L +11	000
	•••							
	C.I							~
	V U	<					111	>
Ready						Idle	0:0 Shutdown Disabled	*1

Start Sample List Run	
C:\MassLynx\Default.PR0	
□Pre-Run □Acquire Sample Data ☑Auto Process Samples	Samples From 2 Io 2
Post-Run	Scheduling Prijority Night Time Process
User Processes	OK Cancel
🌱 MassLynx V4.1	- 🗆 ×

🍸 MassLynx V4.	.1 _ 🗆	×
Range: 12.05-:	12.10	- I
Peak 10/10 Top: 13.93 Area: 167358.9 Range: 13.92-	94 13.94	
Processing sca [Promass Proce Processing sca	an range 108-123 ess] Applying gain of 1.0000000000 ap warge 400-410	
[Promass Proc Processing sc	🚾 C:\Program Files\ProMassLynx\ZNova\xznova.exe	- 🗆 ×
(Pronass Proc Processing sc (Pronass Proc Processing sc (Pronass Proc Processing sc (Pronass Proc Processing sc Processing sc Processing sc	Full-m21 = 3561.1 m010-m21 = 4364.4 fCS-m121 = 4151.5 m010-m21 = 4151.5 m05-m121 = 4367.6 m65-m121 = 556.5 m65-m121 = 556.5 m63-m121 = 565.7 m63-m121 = 565.7 m63-m121 = 565.7 m63-m121 = 565.7 m63-m121 = 565.7 m63-m121 = 565.7 m64-m121 = 565.7 m64-m121 = 565.7 m64-m121 = 565.7 m64-m121 = 565.7 m64-m121 = 565.7 m64-m12	▲ araneters\yong.
		•

- Acquire data
- Configure sample list with ProMass format
- Hit the Start Run button
- Check the Auto Process Samples option
- Enter the sample rows to process in the From and To fields
- Click OK
- Processing should begin, indicated by appearance of ProMassBridge
 and ProMass console windows
- After processing is complete, launch ProMass and click the *ProMass Browser* button

ProMass Browser Summary

🥹 index	.html - Mozilla Fi	irefox													
Ele Edit Yew Higtory Bookmarks Icols Help															
C X 🟠 [] file:///C:/MassLynx/ProMass_test/promass_results/index.html												· Google			\$
🔎 Most Vi	sited Ҏ Getting Sta	arted 脑 Latest Headline:	s												
PI	ProMass														
ProMass Sample Browser															
	1	2	3		4	5		6	7	8	9	10	11		12
A	1	2	3		4	5		6	Ģ	C s	Ç				\bigcap_{12}
в			0		0	0		18	0	0	0	\bigcap_{22}			0
с	\bigcirc	0	0		O.			0	O.	0	<u>O</u>	Q	0		\bigcirc
D	Õ	Ô	0		Ô	0 (Ô	Ő	Õ	Ô	Ő		Ô
E	37	38	39	39 40		41		42	43		45	46	47		48
F	49	50	51		52	53		54	55	56	57	58	59		60
	61	62	63		64	65			67	68	69	70	71		72
<u> </u>	73	74	75		76	77		78	79	80	81	82	83		84
н	85 86 8		87		88	89	(90	91	92	93	94	95		96
	Positio	sition Sample Sample Name Sample Comments							Target Masses	Observed Masses	Purity	Result Code			
YL-04nov2008-04			1	SQD test 1	55665							6896.3	6898.0	66.08	
aug30_RNAi1_1			2	RNA test1	2.1x50 ACQ18 0.2mL/min 20to 408 10 min; A:15:400 TEA/HFIP, B:50%A, 50%MeOH 75um RNAi1 100 pmol inj			rUrUrCrUrGrUrArArUrCrUrCrUrGrUrCrUrATT				6506.9	6505.2	34.78	
May7_ssRNA_2up_1lowdig_25mM_HAA_12			з	SQD test 2	50x2.1mm OST 1.7um, 0.2 ml/min, 10C,30-40%B in 10min, A 25mM HAA B100% ACN			rUrCrGrUrCrArArGrCrGrArUrUrArCrArArGrGTT rCrCrUrUrGrUrArArUrCrGrCrUrUrGrArCrGrATT				6607.0 6693.1	6605.8 6691.9	10.85 13.39	
July17_RNA_157			4	PDE digest	digest RNAi 21nt SM upper strand, 27 pm/uL, High/Low MS/MS, 25 to 50 V, 20-40% B in 20 min			rUrCrGrUrCrArArGrCrGrArUrUrArCrArArGrGTT				6693.1	6692.7	2.82	
aug13_GEM91_2			5	GEM91	2.1x50 ACQ18 0.2mL/min 19.5 to 23.5B in 20min; A:15:400 TEA/HFIP, B: MeOH 60C, 100 um			, C*T*C*T*C*G*C*A*C*C*C*A*T*C*T*C*T*C*T*C*T*C*T*C*T				7776.3	7775.4	20.27	
ZNova 2.9.8 @2001-2008 Novatia, LLC															

- ProMass Browser summary provides concise view of a sample list run.
- Detailed results are accessed by clicking sample wells or table row entries.
- Clicking table headings allows sorting of entries.
- Color codes indicate status of targeted components in data.

Example ProMass Detailed Report

🕑 aug 30 RNAi1 1.html - Mozilla Firefox _ 🗆 🗙 Bookmarks Tools Help File Edit View History ☆ · G · Google file:///C:/MassLynx/ProMass_test/promass_results/aug30_RNAi1_1.html 🙇 Most Visited p Getting Started 流 Latest Headlines [<<] Data File: C:\MassLvnx\ProMass test\aug30 RNAi1 1.raw Sample Name: 2.1x50 ACQ18 0.2mL/min 20to 40B 10 min; A:15:400 TEA/HFIP, B:50%A, 50%MeOH 250m RNAi1 100 pmol inj Sample ID: RNA test1 Position: 2 Instrument Method: MS: C:\MassLynx\Default.PRO\ACQUDB\DEFAULT INLET: C:\MassLynx\Default.PRO\ACQUDB\DEFAULT Nucleotide: rUrUrC rUrGrU rArArU rCrUrC rUrUrG rUrCrU rATT Average Mass (Da): 6506.9 ProMass Monoisotopic Mass (Da): 6503.8 Target Mass Summary Result % Ahundance %Purity Identity RT (min) Target Mass (Da) Observed Mass (Da) Mass Error Intensity (in Spectrum) (Estimate) Code 6505.2 Target Mass 9.00 6506.9 -1.7 Da (-0.026 %) 2.21E+004 58.47 34.78 Sequence Ladder Summary RT (min) Calculated Mass (Da) Observed Mass (Da) Mass Error Intensity Sequence -1.7 Da (-0.026 %) 2.21E+004 rU1-T21 9.00 6506.9 6505.2 0.97 -0.8 Da (-0.068 %) 3.81E+003 rU18-T21 1181.8 1181.0 2.51E+003 rC17-T21 1.06 1487.0 1486.1 -0.9 Da (-0.061 %) 2443.4 2.12 2444.5 -1.1 Da (-0.045 %) 2.14E+003 rU14-T21 1.73 2138.4 2137.3 -1.1 Da (-0.051 %) 1.99E+003 rG15-T21 1.90E+003 2.65 2750.7 2749.4 -1.3 Da (-0.047 %) rU13-T21 6.22 4302.6 4301.1 -1.5 Da (-0.035 %) 1.83E+003 rA8-T21 3.79 3362.1 3360.4 -1.7 Da (-0.051 %) 1.64E+003 rU11-T21 5.09 3973.4 3972.0 -1.4 Da (-0.035 %) 1.62E+003 rU9-T21 1.39 1793.2 1792.1 -1.1 Da (-0.061 %) 1.59E+003 rU16-T21 3055.9 3054.7 1.46E+003 3.28 -1.2 Da (-0.039 %) rC12-T21 4.45 3667.2 3665.6 1.29E+003 rC10-T21 -1.6 Da (-0.044 %) 7.65 1.23E+003 5283.2 5281.1 -2.1 Da (-0.040 %) rG5-T21 4630.3 4631.8 -1.5 Da (-0.032 %) 1.19E+003 rA7-T21 7.25 4938.0 4936.7 -1.3 Da (-0.026 %) 8.86E+002 rU6-T21 8.00 5589.4 5587.2 -2.2 Da (-0.039 %) 8.86E+002 rU4-T21 8.43 5894.5 5892.7 -1.8 Da (-0.031 %) 4.92E+002 rC3-T21 -1.8 Da (-0.029 %) 8.73 6200.7 6198.9 4.73E+002 rU2-T21 Chromatogram Summary RT (min) Base Peak Mass (Da) Intensity LC/MS Peak Area LC/MS Area Percent Spectral Quality 0.97 1181.0 3.81E+003 nk 5.91E+002 2.08 1.06 1486.1 2.51E+003 ok 4.38E+002 1.54 1.39 1792.1 1.59E+003 ok 2.88E+002 1.01 1.73 2137.3 1.99E+003 ok 3.95E+002 1.39 2443.4 2.12 2.14E+003 nk 3.99E+002 1.40

ok

ok

ok

ok

nk

ok

ok

ok

4.84E+002

3.55E+002

4.91E+002

1.70E+002

4.23E+002

1.70E+002

7.20E+002

2.20E+002

1.70

1.25

1.73

0.60

1.49

0.60

2.53

0.77

- In this example an oligo sequence was specified in the Sequence field of the sample list, allowing calculation of the target mass.
- The Target Mass Summary table at the top of the report provides information about expected components.
- In this example, a Sequence Ladder Summary was produced using the *ladder=5'* command in the *Target Info* field of the sample list. This allows matching of all oligo sequence failures.
- The Chromatogram Summary table lists the most abundant deconvoluted mass (i.e., base peak mass) at each retention time.
- Report hyperlinks allow quick navigation to ESI and deconvoluted spectra for each retention time.
- As with manual processing, use the [View Data] hyperlinks in the report to interactively view mass spectra.

Done

2.65

3.28

3.79

4.01

4.45

4.67

5.09

5.36

2749.4

3054.7

3360.4

3449.6

3665.6

3754.5

3972.0

4061.2

1.90E+003

1.46E+003

1.64E+003

4.62E+002

1.29E+003

4.36E+002

1.62E+003

4.60E+002

Additional Tips for Using ProMass

- Set Internet Explorer security to Allow active content to run in files on My Computer, otherwise embedded Javascript in ProMass report pages may not run properly. Available under Internet Explorer | Tools | Internet Options menu item.
- ProMass can run in automated mode with the console window minimized. To do this, launch the ProMass home page, select from the Settings menu *ProMass Console* | *Hide*
- Previously processed data can be browsed by selecting the *File* | *Browse ProMass Files...* menu item from the ProMass home page.
- All mass definitions for nucleotide and amino acid groups are defined in the *znova_masses.ini* file. The user can easily add custom definitions to this file by editing with a text editor. The file is found in the ProMass installation ZNova directory.
- ProMass is currently optimized for unit resolution mass spectrometers. The algorithm works well on higher resolution data (e.g., Q-Tof), however, the resolution is not maintained in the deconvolution results. One can expect mass accuracies of +/- 0.01% for well-calibrated instruments when comparing to isotopic average expected masses.

Example Data

- Example data is provided in the \ProMassLynx\TestData directory.
- Sample data is included for oligos, a myoglobin LCMS, and a protein LCMS run.
- Open the sample list file (.spl) in one of the TestData directories to test automatic processing.

Resources and Feedback

- Novatia is continually working to improve ProMass and wants to be aware of any problems or suggestions to enhance the product.
- Please forward any feature requests and suspected software problems to Novatia.
- Contact Novatia at info@enovatia.com or (732)-274-9933

