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Database searching and accounting of

multiplexed precursor and product ion spectra

from the data independent analysis of simple

and complex peptide mixtures
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A novel database search algorithm is presented for the qualitative identification of proteins over a
wide dynamic range, both in simple and complex biological samples. The algorithm has been
designed for the analysis of data originating from data independent acquisitions, whereby mul-
tiple precursor ions are fragmented simultaneously. Measurements used by the algorithm
include retention time, ion intensities, charge state, and accurate masses on both precursor and
product ions from LC-MS data. The search algorithm uses an iterative process whereby each
iteration incrementally increases the selectivity, specificity, and sensitivity of the overall strategy.
Increased specificity is obtained by utilizing a subset database search approach, whereby for each
subsequent stage of the search, only those peptides from securely identified proteins are queried.
Tentative peptide and protein identifications are ranked and scored by their relative correlation to
a number of models of known and empirically derived physicochemical attributes of proteins
and peptides. In addition, the algorithm utilizes decoy database techniques for automatically
determining the false positive identification rates. The search algorithm has been tested by
comparing the search results from a four-protein mixture, the same four-protein mixture spiked
into a complex biological background, and a variety of other “system” type protein digest mix-
tures. The method was validated independently by data dependent methods, while concurrently
relying on replication and selectivity. Comparisons were also performed with other commercially
and publicly available peptide fragmentation search algorithms. The presented results demon-
strate the ability to correctly identify peptides and proteins from data independent acquisition
strategies with high sensitivity and specificity. They also illustrate a more comprehensive analysis
of the samples studied; providing approximately 20% more protein identifications, compared to a
more conventional data directed approach using the same identification criteria, with a con-
current increase in both sequence coverage and the number of modified peptides.
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1 Introduction

Traditional mass spectrometric approaches for the identifi-
cation of peptides from enzymatically digested proteins
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include MALDI-TOF [1–6] for single or simple protein mix-
tures and ESI MS/MS [7–9] and LC-MS/MS [10] for more
complex mixtures. As the complexity of the samples in-
creases in terms of absolute number, dynamic range, and
molecular weight, the use of accurate mass measurements
alone, as utilized by MALDI-TOF PMF, does not provide
enough specificity to impart unambiguous identification.
Allowing for missed cleavages and/or PTMs can compound
this. In the instances where the accurate mass measure-
ments of the proteolytic peptides do not provide adequate
specificity for successful protein identification, samples are
typically analyzed by ESI data dependent analysis (DDA)
using MS/MS in conjunction with LC [10, 11].

The major advantage of LC-MS/MS-based DDA experi-
ments is the generation of primary structure information.
The added specificity afforded by fragment ions has proven
to be effective for the identification of proteins [7]. Although
LC-MS/MS is more efficient than MALDI-TOF PMF at iden-
tifying proteins in complex matrices, inherent limitations are
associated with the technique. A DDA analysis cycle typically
starts with an MS survey scan and is followed by the selec-
tion/isolation of a precursor ion, or by sequentially isolating
a number of precursor ions, for subsequent MS/MS experi-
ment(s) by either CID [12–14], electron transfer dissociation
(ETD) [15], or electron capture dissociation ECD [16]. Hence,
the experimental strategy is by design a serial process, which
results in a competition to acquire as many MS/MS spectra
to as many precursor ions as possible in a given period of
time. To accomplish this, the time allotted for an MS/MS
acquisition is usually compromised.

A mass spectrometer is typically configured to alter from
MS to MS/MS acquisition mode for those peptides that
exceed a minimum intensity threshold. However, the ioni-
zation efficiency of the detectable precursor ions from a
constituent protein spans approximately three orders of
magnitude, with the majority of the precursor ions present
in the lowest intensity regime. The presence of medium and
high abundance proteins distract the mass spectrometer
from conducting MS/MS experiments on peptides of lower
abundant proteins and on the lower abundant, poorly ioniz-
ing peptides of the medium, and high abundant proteins
themselves. Since an MS/MS acquisition is typically con-
ducted for a short period of time relative to the peak width of
a peptide, it is unlikely that a product ion spectrum at the
apex of the originating precursor is obtained. It is therefore
not uncommon that insufficient spectral product ion quality
is obtained for a valid peptide assignment from low signal
intensity precursors in combination with fast MS/MS scan-
ning rates. Technical approaches and their implications to
improve the S/N of an MS/MS experiment have been dis-
cussed previously in great detail and length [17].

Different commercial, public, and open access search
engines are available for protein database searches and
identification. These include the crosscorrelative approaches
of SEQUEST [18] and Global Proteome Machine [19] and the
probability-based strategies used by MASCOT [20] and Pro-

teinLynx GlobalSERVER [21]. There is however no con-
sensus on what the initial search parameters should be. It
has been suggested that the proteolytic digestion of proteins
in complex matrices is not specific enough for enzyme spe-
cific databases searches [22, 23]. Other reports imply however
that enzymes are specific and reproducible and as such use
stringent enzyme specificity [24, 25]. Missed cleavages and
variable modifications are other criteria that are used incon-
sistently. Furthermore, small and large mass window search
tolerances are used interchangeably.

The selectivity and specificity of a database search are
compromised with every missed cleavage and allowed vari-
able modification. For instance, a database can exponentially
increase in size from 1.2 million to over 30 million theoreti-
cal peptides with no enzyme specificity, one missed cleavage,
and oxidized methionines, without the use of decoy data-
bases [26]. Considering these type of statistics, if used
inconsistently, the replication rate of identifications from an
identical sample run on different instruments, in different
laboratories, can be interpreted as being relatively low [27].

The mass accuracy of both precursor and fragment ion
data can have a profound impact on the interpretation of the
results and yet the identification algorithm used for the pep-
tide/protein identification may not appropriately consider
these relevant statistics. Product mass accuracy provides
increased selectivity and specificity for peptide fragment ion
spectra identification compared to precursor mass accuracy
only [28]. The accuracy of the peptide assignments can be
improved in a number of ways, including additional MS/MS
data processing [29], improved charge-state determination
[30], low quality MS/MS data removal [31], redundant MS/
MS spectra clustering [32, 33], and the use of more sophisti-
cated scoring schemes such as those implemented in OLAV
[34], SALSA [35], and EPIR [36]. In addition, correlative
algorithms have been described which integrate retention
time by introducing hydrophobicity prediction models [37].
While the methods for protein identification from MS/MS
data described above have been successfully demonstrated in
a variety of applications, the quality of the output of these
algorithms is directly related to the quality of the MS/MS
fragmentation spectra. This is particularly so when a single
MS/MS spectrum is used for the identification of a biologi-
cally relevant protein. Sometimes reversed or randomized
databases are used in conjunction with a species-specific
database for monitoring false positive rates [28, 38]. More
often, however, searches are conducted with just a species-
specific database.

Limited mass measurement accuracy further reduces the
selectivity and specificity of a given method. As an example, a
human database of 24 179 proteins contains over 800 000
tryptic peptides without considering missed cleavages. On
average, a single precursor mass will match to approximately
600 peptides in the database if the query is based on nominal
mass (61 Da) and the analysis mass range is between 750
and 4750 amu. Similarly, with an average number of 250
product ions per MS/MS experiment and a 61 Da fragment

© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.proteomics-journal.com



1698 G.-Z. Li et al. Proteomics 2009, 9, 1696–1719

ion mass bin, close to 50% of a typical MS/MS fragment ion
window from 50 to 1700 Da is populated. The selectivity and
specificity of these types of database queries, using nominal
mass and pattern matching, are arguably an apparent func-
tion of peptide length [28]. A probability of greater specificity
should not be expected to be obtained with larger peptides to
compensate for this bias since approximately 70% of the
tryptic peptides in any given proteome are less than
1750 molecular weight.

Recent literature reports suggest that a significant num-
ber of proteins identified using fast scanning MS/MS
instrument types are based on one or two peptide-based
protein matches, despite the fact that a very large number of
MS/MS spectra were acquired [39–41]. The one or two pep-
tide-based identifications accounted for approximately 40%
of the total number of reported proteins. Interestingly, how-
ever, approximately two-thirds of the DDA experiments were
acquired on m/z values at the same retention times as data
acquired from replicate injections on multiple instruments
and instrument types. These observations cast doubt on the
claimed serendipitous nature of DDA. This is, however, to be
expected since the relative protein concentration of the sam-
ple and ionization rates are constant. Hence, the majority of
the data should match to the same proteins if the majority of
the components that led to an MS/MS event are the same. In
cases where this is not observed, this is clearly indicative of
either an alternative fractionation strategy or of incorrect
identifications and challenges the belief that the analysis of
the same sample run on similar or different instruments
should provide complementary results [28].

A novel database search strategy is described that is
designed for data independent accurate mass acquisitions.
The strategy is based upon utilizing physicochemical attrib-
utes associated to peptides, separated by RP LC and gas
phase mass analyzed by quadrupole TOF-MS. The algorithm
employs a hierarchal database search strategy in which tryp-
tic peptides are tentatively identified according to initial
search parameters. These tentative peptide identifications
are ranked and scored by how well they conform to a number
of predetermined, physicochemical attribute models. If the
number of identified peptides exceeds a minimum initial
score, retention time, and fragmentation models are refined
and used to further score the identified peptides. All tentative
peptides are collapsed into their parent proteins utilizing
only the highest scoring peptides that contribute to the total
protein score. A depletion algorithm is subsequently used to
prevent the peptide detections from the highest scoring pro-
tein, typically the most abundant one, from being considered
in the subsequent identification of less abundant proteins.
Once a protein has been securely identified, all top ranked
precursor ions and their corresponding product ions are
removed from all other tentatively identified proteins. The
remaining unidentified peptides, and tentatively identified
proteins, are then reranked and rescored, and the process is
repeated until the user-defined false positive rate, based on
identification of random or reverse proteins, is obtained. A

subset database is created from the validated protein identi-
fications and the next iteration initiated. The second iteration
allows for the identification of in-source fragments, the neu-
tral loss of H2O and NH3, missed cleavages, oxidized
methionines, deamidations, N-terminal alkylations, and any
other user-defined modifications. The processing software
sets automatically the initial search parameters, including
the precursor and product ions mass tolerances as well as a
product-to-precursor ion time-alignment window. Since
selectivity and specificity increase with increasing product
ion mass, only time-aligned fragment ions whose mass is
greater than y3 and b3 are scored. In those instances where
the experiment is conducted in replicate, the resulting data-
base searches can be combined, which further increases the
significance of identification. The decision to combine data
from technical replicates is predicated on the identification
of the same peptide sequence at the expected retention time
and similarity of time-aligned product ions. The underlying
premise guiding the decision is based on the notion that
signal replicates, and noise does not.

Utilizing an absolute quantification strategy [42], data are
presented to illustrate the algorithm’s ability to correctly
identify proteins across a dynamic range of nearly three
orders of magnitude. The replication rate of proteins, pep-
tides, and product ions exceeds 75% in data sets of multiple
injections of the same or similar samples. Using the absolute
quantification capabilities of the acquisition/analysis pro-
cess, the data presented illustrate protein sequence coverage
to be commensurate with its relative abundance in the sam-
ple matrix [43]. In addition, the results depict how coeluting
precursors sharing similar product ions are deconvolved via
time alignment to their parent peptide and protein.

2 Materials and methods

2.1 Sample preparation

Fifty microliters of 0.5% aqueous formic acid was added to
100 mg of cytosolic Escherichia coli digest standard (Waters
Corporation, Milford, MA, USA). A tryptic digest stock solu-
tion containing four standard proteins, alcohol dehy-
drogenase, phosphorylase B, albumin, and enolase, was pre-
pared in 0.1% aqueous formic acid and diluted to concentra-
tions of 200, 200, 200, and 100 fmol/mL, respectively. Equal
volumes of the E. coli digest and the standard proteins were
combined to give a sample concentration of 0.5 mg/mL of E.
coli digest and 100, 100, 100, and 50 fmol/mL of alcohol
dehydrogenase, phosphorylase B, albumin, and enolase,
respectively. The tryptic digests of the four proteins were also
prepared in 0.1% aqueous formic acid without the presence
of the E. coli digest standard at the same concentration level
of 100, 100, 100, and 50 fmol/mL, respectively. Unless stated
otherwise, these solutions were used as stocks for all the
experiments described in this manuscript.
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2.2 LC-MS configuration

Nanoscale LC separation of tryptic peptides was performed
with a nano-ACQUITY system (Waters Corporation), equip-
ped with a Symmetry C18 5 mm, 5 mm6300 mm precolumn
and an Atlantis C18 3 mm, 15 cm675 mm analytical RP col-
umn (Waters Corporation). The samples, 1 mL full loop
injection, were initially transferred with an aqueous 0.1%
formic acid solution to the precolumn at a flow rate of 4 mL/
min for 3 min. Mobile phase A was water with 0.1% formic
acid while mobile phase B was 0.1% formic acid in ACN.
After desalting and preconcentration, the peptides were
eluted from the precolumn to the analytical column and
separated with a gradient of 3–40% mobile phase B over
90 min at a flow rate of 300 nL/min, followed by a 10 min
rinse with 90% of mobile phase B. The column was reequi-
librated at initial conditions for 20 min. The column tem-
perature was maintained at 357C. The lock mass compound,
[Glu1]-fibrinopeptide B, was delivered by the auxiliary pump
of the LC system at 250 nL/min at a concentration of
100 fmol/mL to the reference sprayer of the NanoLockSpray
source of the mass spectrometer. All samples were analyzed
in triplicate.

Mass spectrometric analysis of tryptic peptides was
performed using a Q-TOF Premier mass spectrometer
(Waters Corporation, Manchester, UK). For all measure-
ments, the mass spectrometer was operated in v-mode
with a typical resolution of at least 10 000 FWHM. All
analyses were performed in positive mode ESI. The TOF
analyzer of the mass spectrometer was externally calibrated
with a NaI mixture from m/z 50 to 1990. The data were
postacquisition lock mass corrected using the doubly
charged monoisotopic ion of [Glu1]-fibrinopeptide B. The
reference sprayer was sampled with a frequency of 30 s.
Accurate mass LC-MS data were collected in an alternat-
ing, low energy, and elevated-energy mode of acquisition
[17, 44]. The spectral acquisition time in each mode was
1.5 s with a 0.1 s interscan delay. In low energy MS mode,
data were collected at constant collision energy of 4 eV. In
elevated-energy MS mode, the collision energy was ramped
from 15 to 40 eV during each 1.5 s integration. One cycle
of low and elevated-energy data was acquired every 3.2 s.
The RF amplitude applied to the quadrupole mass analyzer
was adjusted such that ions from m/z 300 to 2000 were
efficiently transmitted, ensuring that any ions observed in
the LC-MS data less than m/z 300 were known to arise
from dissociations in the collision cell.

Quantification experiments were conducted with
nanoscale LC-MS/MS using a tandem quadrupole system.
The Quattro Premier XE mass spectrometer (Waters Cor-
poration) was operated in the multiple reaction monitoring
(MRM) mode of analysis and using the same chromato-
graphic conditions described above. The transmission
window of both mass analyzers was typically 1 Da, the
dwell time 25 ms and the collision energy approximately
20 eV.

2.3 Ion accounting process

2.3.1 Ion detection

The raw data from the three data functions, low energy, ele-
vated energy, and lock spray, were processed as previously
described [45], with minor modifications. The result of this
process is a time-aligned inventory of accurate mass-reten-
tion time components for both the low and elevated-energy
data [17]. Included for each component is the monoisotopic
accurate mass, a calculated mass deviation, the summed
peak area of all isotopes of all charge states, a calculated area
deviation, the apex retention time, the chromatographic peak
start and end retention times, and average fractional charge
state.

2.3.2 Time alignment

The low and elevated-energy accurate mass-retention time
components are time aligned into precursor/product ion
tables upon completion of the ion detection process. In the
case of coeluting peptides, the same fragment ions will be
initially assigned to multiple precursors. However, the ori-
gin of the fragment ions is later facilitated by the inherent
mass accuracy present within the data, and the ability of
the search engine to deplete product ions from securely
identified peptides and proteins throughout the iterative
search process, so as not to interfere with the identifica-
tions of less abundant peptides/proteins. The basis of the
time-alignment algorithm is that elevated-energy ions
whose calculated apex retention times equal the apex
retention time of a low-energy accurate mass-retention
time component, plus or minus one-tenth of the chroma-
tographic peak width of the low energy component, are
associated. Each elevated-energy accurate mass-retention
time component can be associated with multiple low
energy components. The third element in the process flow
diagram shown in Fig. 1 represents the time alignment
process.

2.3.3 Filtering

The time aligned precursor/product ion tables are filtered
before submission to the search algorithm. The filtering
process eliminates all low energy precursors under 750 Da
and all elevated-energy product ions under 350 Da. These
masses are excluded because the afforded selectivity and
specificity is low. These ions are reclaimed in a later iteration
of the search algorithm, after the constituent proteins have
been determined. Typically, all proteins generate tryptic pep-
tides under 750 Da; however, these peptides have high
sequence similarity and are therefore not specific for a given
protein sequence. Moreover, sequence specificity increases
with peptide length. Numerous peptides start and end with
the same three amino acids. As such, the sequence selectivity
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Figure 1. Workflow ion accounting database search algorithm illustrating the data processing (first three elements), the iterative search
process (following four elements) and the peptide ranking and the ion depletion iteration of the tentative pass 1 identifications (genuine
tryptic peptides, including fixed modifications).

and specificity of y1 through y3 and b1 through b3 do not con-
tribute considerably. In the absence of other molecular ions
within the ion transmission window of the first mass analy-
zer, y1 through y3, b1 through b3, immonium ions and any
other low molecular weight product ions have significance
[46]. Further filtering includes the removal of product ions
higher in intensity than the precursor and the removal of
product ions higher in mass than the precursor. In the case
of in-source fragmentation, however, a fragment ion can be
higher in intensity than its precursor. If the precursor pep-
tide is labile enough to fragment during the ionization/ion
transfer process, in-source fragment ions will produce an ion
series identical to the true parent in the collision cell. The
sum of similar product ion intensities, these ions are enter-
ing the collision cell at the same moment of time, can exceed
the intensity of the residual precursor. The identification of
in-source fragments is conducted during the second pass of
the database search strategy.

2.3.4 Selecting a searchable database

Prior to submission of the filtered precursor/product ion
tables to the database search algorithm, a database is speci-

fied. Either a reverse or random database can be generated
for monitoring the false positive rate of a particular search. A
reverse decoy database is produced by reversing the sequence
of each protein from the original database. A randomized
version of the query database is generated by randomizing
the protein sequences, while holding the peptide amino acid
composition and the number of tryptic peptides constant.
With a random decoy database, each protein can be x-fold
randomized, where x is a user-defined integer. In either case,
the decoy database is merged with the original database and
subsequently used to conduct the database search with a
user-defined “false positive” rate. If neither option is selected,
the algorithm creates by default a one-fold randomized decoy
database and appends it to the user-selected query database.
The created combined database will be queried and the al-
gorithm will automatically determine the minimum score
for a protein to be reported.

2.3.5 Preassessment survey

Prior to the database query, a presearch of the time-aligned
precursor/product ion lists is conducted with the same pro-
tein sequence database, search parameters, and scoring/
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ranking system as will be employed during the actual query.
During the presearch, the algorithm creates and/or adjusts
some of the model parameters related to the gas and liquid
phase physicochemical properties of peptides. To account for
any experimental variation, a minimum number of peptides,
approximately 250, exceeding a minimum score must be
identified for the algorithm to develop new models. If these
criteria/thresholds are not satisfied, the default model pa-
rameters will be applied.

A retention time model is generated in real time using
the identifications from the preassessment survey, for all
peptides residing in the database, using a least squares fit to
the observed elution times of the identified peptides. Addi-
tionally, a monoisotopic product ion mass distribution is
generated for all unambiguous peptide identifications. The
algorithm subsequently produces an optimized fragmenta-
tion model by comparing the experimentally derived fre-
quency distribution of the product ions with the number of
times a specific bond cleavage was identified. Further fine-
tuning of the algorithm is performed by comparing the
sequence length, charge state, and precursor intensity to the
summed number of identified product ions. The summed
intensity of these product ions is related to the precursor ion
intensity and the total number of continuous and com-
plementary identified y and b ions. Furthermore, the algo-
rithm compares the composition of peptides and the location
of specific residues with the observed precursor charge state,
or states, and the summed y/b ion intensity ratios.

2.3.6 Database search pass 1

Other than the selection of the protein sequence database
and an acceptable false positive rate, the software can provide
all other database search parameters. Parameters settings
can be manually modified and customized. The database
search is a hierarchal process and analogous to the iterative
search process described for the mapping and accounting of
spectral MALDI components in the case of relatively simple
protein mixtures [47]. Here, an iterative search strategy is
described for data-independently acquired LC-MS data. Dur-
ing the first iteration, each parent/product ion table is quer-
ied against the protein sequence database considering only
completely cleaved tryptic peptides for identification. For a
peptide to be putatively identified it has to fit within the pre-
cursor ion mass tolerance, typically ,10 ppm, and contain at
least three fragment ions within the product ion mass toler-
ance, typically ,20 ppm. These tentative peptide identifica-
tions are scored, based upon how well they correlate to a
number of different models, using the physicochemical
attributes of peptides in both the gas and liquid phase.

The number of matched product ions is initially com-
pared to a model, which predicts the number of product ions
that a tryptic peptide of a given length, charge state, and
intensity should produce. The initial score is adjusted based
upon the correlation of the matched data to the model. Due
to the nature of the acquired data, and the extremely large

number of peptide identifications that are considered up to
this point, the fragmentation model previously generated in
the presearch is consulted to increase or decrease the initial
score by the presence or absence of preferred fragmentation
sites. In addition, a Markov Chain extension is employed
whereby a continuous ion series increases the score. In the
chain extension model, higher weighting (increased score) is
given to continuous, higher molecular weight product ions
(those higher in molecular weight then the multiply charged
precursor). Other physicochemical attributes that contribute
to the peptide score are (i) the presence of certain amino
acids at or near the N-terminus, affecting the ratio of the total
y ion intensity to the total b ion intensity, (ii) the presence of
product ions corresponding to loss of H2O and NH3 from
peptides containing specific amino acids, (iii) com-
plementary C or N terminal product ions, (iv) how well the
tentative amino acid sequence supports the observed peptide
charge states, and (v) how well the experimental retention
time matches the theoretical retention time, assigned to that
peptide from the preassessment search. The highest scoring
tentative peptide identification for a given peptide in the
precursor/product ion table is given a peptide rank value of
one. If other possible identifications for a given precursor
have scores very near that of the highest score, all tentative
identifications are also given the rank value of one. Other
possible identifications for the precursor (multiplexed spec-
trum) are given the rank value of 0 at this time.

After ranking, the tentative peptide identifications are
collated into tentative protein identifications. Initially, pro-
tein identifications are ranked by summing the intensity of
product ions arising from the tentative peptide identifica-
tions with a rank value of one for that protein. The putatively
identified protein with the highest total product ion intensity
is given the rank of one with the other proteins ranked in
descending order by this measure. At this point the proteins
are scored. Initially, the protein score is derived from the
matching tryptic peptides with a rank value of 1 and nor-
malized to the length of the protein, and the total intensity of
the three best ionizing peptides. This initial protein score is
adjusted by consideration of various physicochemical attrib-
utes of proteins. The first adjustment to the score is made by
comparing the total number of product ions associated to
that protein with the expected number of product ions from a
protein of that length and total precursor ion intensity. Sec-
ondly, the ionization efficiency distribution of identified pre-
cursors to that protein is compared to a model based on pro-
teins of similar molecular weight and concentration.

Other contributing attributes include sequence coverage,
the total number of continuous and complementary y and b
ions, the ratio of total product ion intensity to the total pre-
cursor ion intensity, and the number of ions observed at
preferred fragmentation sites. Upon completion of the pro-
tein scoring process, the highest scoring protein is con-
sidered identified and all precursor and product ions asso-
ciated with the top ranked peptide sequence identifications
for that protein are excluded from all subsequent protein
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identifications. The ranking and scoring process is repeated
until either no protein identification exceeds the minimum
score or the acceptable false positive rate has been exceeded.
To determine the false positive rate, the number of proteins
identified prior to the highest scoring reverse/random iden-
tification is counted. This number is multiplied by the cho-
sen acceptable false positive rate to determine the maximum
number of reverse/random identifications allowed. This cal-
culation is repeated with each subsequent reverse/random
identification encountered in the protein list until the num-
ber of actual reverse/random identifications equals the cal-
culated allowable number, at which point no further protein
identifications are allowed.

2.3.7 Database search pass 2

The second pass of the database algorithm is designed to
identify peptide modifications, and nonspecific cleavage
products to proteins positively identified in the first pass. The
software realigns the low and elevated-energy accurate mass-
retention time components that were not identified in pass
one and constructs a temporary subset database of the pro-
teins identified from pass one. During the creation of the
subset database, the software allows for all peptides asso-
ciated with the pass one proteins to exist in modified forms.
These include in-source fragments, in-source loss of H2O
and NH3, missed cleavages, oxidized methionines, deami-
dations, N-terminal alkylations, and other variable modifica-
tions, including PTMs. The first iteration of the second pass
of the algorithm specifically looks for in-source fragments
and their unique constituent fragment ions. Identification of
in-source fragments is confirmed by the accurate mass of the
fragments, and the fact that the apex retention time and
chromatographic peak width of the fragments must be the
same as that of the originating precursor. The addition of
unique, elevated-energy ions, increases the validity of protein
identifications and allows for further depletion of elevated-
energy ions from other proteins and peptides prior to the
next iteration. The second iteration of the second pass speci-
fically looks for precursor ions that have lost H2O or NH3.
Again, these identifications are confirmed by mass accuracy
and the fact that their apex retention time must be the same
as that of the precursor, plus/minus one-tenth of the chro-
matographic peak width of the precursor. The final iteration
at this stage identifies missed cleavages, oxidized methio-
nines, deamidations, and other variable modifications. Low-
energy accurate mass-retention time components may be
assigned to multiple variant peptides in these iterations. The
results are filtered such that the variant containing the larg-
est number of matched fragment ions, with additional
weighting placed on the peptides that have fragments indi-
cating the point of modification, is selected as the best
match. Any of these variants not having matched elevated-
energy accurate mass-retention time components are ex-
cluded.

2.3.8 Database search pass 3

Following completion of pass two, the algorithm realigns the
remaining low and elevated-energy accurate mass-retention
time components that were not identified from the first two
passes. The precursor/product ion tables are again searched
against the complete database, without any restriction on
product ion intensity. Highly labile peptides producing in-
source fragments are identified during this stage of the
database strategy. In this case, the total product ion intensity
can exceed the intensity of the precursor.

In addition, the assignment of all possible ions to the
abundant proteins increases the sensitivity and selectivity of
the identification of less abundant proteins based on the
remaining ions. For example, additional multiple, variable
modifications per peptide and single-point amino-acid mod-
ifications are identified at this stage. In a similar manner to
pass one, all tentative peptide identifications are scored,
ranked, and subsequently collapsed into proteins identifica-
tions. The proteins are scored and ranked and the depletion
process repeated until a minimum protein score can no
longer be maintained or the specified false positive rate of
identification is breached.

2.3.9 Output

The final output is a table containing all the theoretical and
experimental attributes associated with each product ion for
each precursor ion of each protein identified, including those
calculations made to determine the peptide sequence and
protein scores. In addition, an output of the initial search can
be provided. This table contains the information on every ion
that could have been tentatively assigned to any peptide for
any protein.

3 Results and discussion

3.1 Physicochemical properties of proteolytic

peptides

Since all proteolytic peptides are constructed from the same
20 commonly occurring amino acids, they are expected to
display similar physicochemical properties. This has been
demonstrated in chromatography research by retention time
prediction models that incorporate amino acid composition
and sequence, overall hydrophobicity, chain length, chemical
nature of termini, and pI [37, 48–52]. Similarly, prediction
models for gas-phase fragmentation spectra have been sug-
gested using either empirically or theoretically derived rules
based upon the primary amino acid sequence [53–58]. It is
rare, however, for both to be utilized simultaneously for the
purpose of peptide identification from LC-MS data. A num-
ber of physicochemical properties will be cited that are con-
sidered by the algorithm described in this paper for the pur-
pose of validating protein identifications.
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3.1.1 Intact protein MW, intensity, and number of

detected peptides (ionization efficiency)

A previous study demonstrated that the relationship between
the number of tryptic peptides produced by digestion and
detected by LC-MS and the intact protein molecular weight is
nearly linear [42]. The number of peptides that can be iden-
tified increases with protein molecular weight and con-
centration. Also there is a relationship between the total
intensity of the three most intense tryptic peptides identified
to a protein and the molar amount of digested protein
injected on-column [42]. Supporting Information Fig. S1
shows the identified peptides to 100 fmol of glycogen phos-
phorylase, sorted in descending intensity that replicated in
three out of three injections. The reproducibility of peptides
replicating across three injections is typically 85%, compared
to the total number of peptides identified on an individual
injection basis. By expressing the number of identified pep-
tides to a protein as a linear function of the molecular weight
of the protein, it is possible to calculate an expected number
of peptides that may be identified, for any given protein of
any molecular weight at the same concentration. Table 1
summarizes the results for four tryptic digested protein
standards, in which one of the proteins was used as a refer-
ence for the prediction of the number of peptides that should
be identified for other proteins at the same or similar con-
centration. The results presented indicate that a good corre-
lation was obtained for the number of predicted versus the
number of identified peptides. Based on this observation, the
number of identified peptides for a protein of a given mo-
lecular weight, at a given concentration, can be predicted and
used as an indicator or rule to support the correct identifica-
tion of a protein [43].

The composition of a sample in terms of its constituent
proteins and their corresponding concentrations in the
sample is constant and independent of the instrument type
used for analysis. Furthermore, the best ionizing peptides
produced by ESI are very often the best ionizing peptides,
independent on interface design, and type of mass analyzer.
Label free or isotopically labeled quantification strategies
could not be utilized for protein quantification if the latter
two arguments did not hold. Moreover, the tryptic peptides

produced from a protein do not ionize with equal efficiency,
nor do they elute at the same moment in time. In practice,
they typically elute across the chromatographic profile and
exhibit a range of ionization efficiencies, with the majority
of the peptide intensities lying in the lower third of the
range. Hence, the most abundant proteins should be iden-
tified with the highest sequence coverage, as the number of
peptides that can be identified to a protein is directly pro-
portional to the molecular weight and the on-column con-
centration of the protein. It should also be noted that the
number of peptides that can be identified to a protein, with
increasing concentration, will reach an asymptotic max-
imum. This, simply because the maximum number of
tryptic peptides that can be identified has been reached. The
number of identified peptides to a protein is the basis for
some LC-MS spectral counting-based absolute quantifica-
tion algorithms [43, 59–62], which can bias the results
obtained by this method, for the above reason. Moreover,
the ionization intensity distribution shown in Supporting
Information Fig. S1 illustrates that the difference in ioniza-
tion efficiency between any two adjacent peptides is less
than a factor of two. As such, there should always be more
than one identifiable peptide to a protein; unless the applied
method is capable of sampling and qualitatively identifying
signals at the absolute LOD.

This behavior is not observed in a DDA experiment due
to the inherent duty cycle limitations and partial peak sam-
pling. This is clearly apparent in DDA experiments where
there is a prevalence of single-peptide-based protein identifi-
cations. This is not because a DDA method is more effi-
ciently sampling the lowest levels of signal intensity, but due
to the compromising nature of the technique. That is, if the
MS signals of all detectable precursor ions, not only the ones
selected/isolated for a collision induced fragmentation
experiment, were processed in a similar fashion to those
acquired by parallel, alternate scanning [17, 44], in which the
chromatographic peak area for every precursor ion was cal-
culated, it would be observed that DDA acquisitions sample
the lower level signals very inefficiently [17]. This observation
is platform independent and will be described in detail in a
subsequent paper. For this reason, the ability to use the
number of peptides identified, or the number of times a

Table 1. MW versus number of identified peptides (at a fixed concentration)

Protein MW (kDa) No. of observed
peptides

Response
factor

No. of predicted
peptides

No. of observed/
no. of predicted
peptides

Glycogen phosphorylasea) 97 56 0.577 56 1a)

Serum albumin 70 40 40.4 1.01
Alcohol dehydrogenase 37 21 21.4 1.02
Enolaseb) 47 16 (27.1/2) 14 1.14

a) Reference protein.
b) The Enolase concentration is half that of the other standard proteins throughout the manuscript.
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peptide is identified, from a DDA experiment as a means for
determining the concentration of a protein at the lower levels
of sensitivity is also limited.

Further, it is well understood that processed or degraded
proteins may exist in complex samples. As a result, these
proteins may not conform to the theoretical number of pep-
tides that should be identified based on the criteria described
here. The presented algorithm however does not accept or
reject a protein identification solely on conformity to any
single physicochemical property. Moreover, the position for
each identified peptide in the protein sequence is annotated
in the output. In these instances, the location of the securely
identified peptide sequences, relative to the protein, can be
confirmed either to the N- or C-terminus, thereby validating
processing or degradation.

3.1.2 Peptide chain length, mass, charge state, and

total product ion intensity

Supporting Information Fig. S2 and Table S2 show com-
bined chromatographic and peptide properties and ioniza-
tion efficiency characteristics. Supporting Information
Figs. S2a and b show the peptide precursor m/z and charge
state as a function of retention time, respectively. Peptides
typically elute from an RP column in order of increasing hy-
drophobicity, peptide chain length, and charge state [63].
Superimposing Supporting Information Figs. S2a and b
possibly provide a tool to model the chromatographic behav-
ior of peptides and be employed in identification scoring
schemes. However, the search algorithm presented in this
paper makes use of a more sophisticated retention time pre-
diction model to rule out false positive identification, which
will be discussed in a subsequent paragraph.

Figure 2a illustrates a reasonably linear relationship at
the peptide level between the intensity of a precursor ion to
the total product ion intensity of all product ions matched to
that precursor. Figure 2b shows an even closer linear rela-
tionship at the protein level between the total precursor ion
intensity of all precursor ions assigned to a protein and the
total product ion intensity of all matching product ions from
the matched precursors. The ability to generate such rela-
tionships is enabled by the ability to determine the chromat-
ographic peak area of all ion types, both precursor and frag-
ments. The data presented illustrate a predictable relation-
ship between the intensity of a precursor ion and the
expected total product ion intensity at both the peptide and
protein level, which can be used to rank or score tentative
peptide and/or protein identifications by how well these
relationships conform to the established models.

The number of consecutive product ions is a property that
is also typically used to score peptide assignments [64]. The
expected number of consecutive identified b and y ions should
ideally increase, with both peptide chain length and precursor
and fragment intensity. Other qualitative database search
engines have implemented the use of consecutive ion series
identification as a spectrum quality validation tool [21, 64, 65].

The number of identified consecutive ions, as a function of
peptide chain length and intensity, is not widely utilized by
these search algorithms, whereas the results shown in Fig. 3
clearly show that there is a trend, which can be modeled, be-
tween the number of matching consecutive b and y ions and
the intensity and length of the originating peptide.

In the case of lower resolution mass spectrometers, MS/
MS data are typically acquired at nominal mass, with the
consequence that product ions can easily be assigned to an
incorrect amino acid sequence. This is particularly relevant in
the analysis of highly complex tryptic mixtures, where tan-
dem mass spectra containing fragment ions of multiple pep-
tides are acquired throughout the course of the LC separation.
Therefore, during an MS/MS experiment, the coincident
presence and fragmentation of multiple precursors in the
collision cell [66, 67], can give rise to a multitude of amino acid
combinations with similar nominal mass. This effect can lead
to higher false positive protein identification rates, based
upon the incorrect assignment of fragment ions at low mass
accuracy and resolution. The problem is compounded by the
fact that the median peptide length from any given tryptic
proteome is about 11 residues in length and that close to half
of the 20 naturally occurring amino acids have a neighboring
amino acid within 1 mass unit.

Tryptic peptides containing additional basic residues
within the peptide backbone, in addition to the normal tryp-
tic C-terminal lysine or arginine, tend to exist at multiple
charge states. In addition, when these basic residues are at,
or near, the N-terminus upon fragmentation these peptides
often show a summed b ion intensity that can and often does
exceed that of the y summed product ion intensity. For tryptic
peptides, absent of any basic residues at or near the N-ter-
minus the opposite is true; the summed y ion product
intensity under low energy CID conditions is typically
greater than that of the corresponding b ions. Hence, these
additional physicochemical attributes can be used for tenta-
tive peptide ranking and scoring.

3.1.3 Preferred fragmentation sites

The majority of the detected product ions from the frag-
mentation spectra of tryptic peptide precursor ions from
complex mixtures are below (M 1 H)1 1200, which is illus-
trated by the tryptic peptide product ion frequency distribu-
tion shown in Fig. 4a. As a result, all binary tentative amino
acids bond identifications, between y3 to y15 and b3 to b15, can
be calculated and directly compared with the experimentally
identified amino acids bond cleavages. The results from this
analysis are shown in Fig. 4b. As expected, and reported by
other groups [68], the XP bond was identified with the high-
est frequency. For example, the relative occurrence of three
frequently observed bond cleavages was equal to 87, 66, and
70% for IP, LP, and AP, respectively. This observation sug-
gests that the relative intensity distribution of the fragment
ion spectra should be predictable, and that rules can be
applied to the identification criteria. For example, it is un-

© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.proteomics-journal.com



Proteomics 2009, 9, 1696–1719 1705

Figure 2. Summed product ion
intensity of all matching frag-
ment ions identified to a pre-
cursor as a function of the asso-
ciated precursor ion intensity (a)
and summed product ion inten-
sity of all matching fragment
ions identified to all precursors
of a protein as a function of the
summed precursor ion inten-
sities assigned to the protein (b).
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Figure 3. Number of matching consecutive b and y ions as a function of peptide chain length multiplied by the precursor intensity.

likely that an AA bond will generate a product ion of higher
intensity than an IP bond. Hence, in those instances where
both bonds are tentatively identified in the same fragmenta-
tion spectrum, the fragment ion originating from the IP
bond should have at least the same/or higher intensity than
the fragment ion originating from the amino acid bond
cleavage. In other words, tentative peptide identification can
either be accepted or rejected based on this rule set. The
complete frequency distribution as a function of bond type
cleavage is provided in Supporting Information Table S1.

The empirical derived preferred fragmentation model
described here uses fragment ion type and molecular weight.
A recent report [69] shows comparable results obtained by lin-
ear regression analysis of MS/MS fragmentation spectra. It
was concluded that the most abundant y ion, preferred frag-
mentation sites excluded, is preferentially found at m/z ap-
proximately 60% of the precursor peptide mass, and the most
abundant b ion typically at m/z 15–20% of the precursor mass.

3.1.4 Retention time modeling

The search algorithm employs a retention time model to
predict the elution time of the peptides [70]. Retention
depends on gradient slope, column length, stationary

phase, and other typical RP peptide separation parameters.
Hence, refinement of the model is required if any of these
parameters are changed. This is addressed by the search al-
gorithm on an injection-by-injection basis, thereby using
the preassessment data set, comprising assigned sequence
and experimental retention time, as input for the retention
time prediction model. Supporting Information Fig. S3
shows the theoretical peptide retention time as a function of
the observed retention time for a complex tryptic digest
mixture. A relatively broad, but consistent correlation be-
tween the observed and predicted retention can be observed,
which implies that retention time modeling can be utilized
as a liquid phase physicochemical property for tentative
ranking purposes and to remove gross outlier peptide iden-
tifications.

3.1.5 Conservation of mass/charge (matter) and LOD

The intensity of a precursor ion is expected to be related to the
total intensity of the generated product ions. The summed
intensity of the product ions should equal the intensity of the
precursor if there are no subsequent losses in the collisional
process, including detection by the second mass analyzer, and
no neutralization of charge occurs during fragmentation. In
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Figure 4. Precursor mass (deisotoped and charge-state reduced) frequency distribution (a) and relative fragmentation side frequency dis-
tribution (b) of the detected and identified peptides.
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practice, this is not the case with collision-induced fragmen-
tation of peptides [71]. The results shown in Fig. 5 suggest a
near linear relationship between the total intensity of the
fragment ions and the intensity of the precursor ion. Further
examination of the total intensity of the product ions reveals
that for the most intense peptides the total product ion
intensity easily breaches 50% of the precursor ion intensity.
Therefore, peptide identifications with a total product ion
intensity exceeding that of the precursor will flag these iden-
tifications as a possible error, except in the instances where
the precursor intensity was reduced due to in-source frag-
mentation.

As stated in the previous sections, none of the discussed
physicochemical attributes are used as a hard filter to either
confirm or reject a protein identification on their own. How-
ever, in combination they are extremely selective regarding
the assignment of fragment ions and can be employed for
the scoring of peptide and protein identifications [72]. To
summarize, the algorithm utilizes the following parameters
for the identification of both peptides and proteins: (i) accu-
rate precursor mass, (ii) accurate product ion masses, (iii)
total product ion intensity, (iv) number of consecutive y and b
ions, (v) complementary y and b ions, (vi) experimental frag-
mentation at preferred cleavage sites, (vii) total y ion inten-
sity/total b ion intensity, (viii) conformance with retention

time model, (ix) total product ion intensity/precursor ion
intensity, (x) neutral losses conforming to amino acid com-
position, (xi) multiplicity of charge states conforming to
model, (xii) number of matched peptides conforming to the
model, (xiii) number matched product ions conforming to
model, and (xiv) total product ion intensity/total precursor
ion intensity. To the knowledge of the authors, these param-
eters have rarely been used to support peptide/protein iden-
tifications, and could be of use in data dependent methods as
well as the multiplexed data independent acquisition method
presented here.

3.2 Four-protein mixture: Proof of concept example

The ability of the algorithm to provide a highly selective and
sensitive method for protein identification was first assessed
by thoroughly evaluating the search results for the tryptic
digest of a four-protein mixture. This protein mixture has
been well characterized and enables generation of unambig-
uous peak-list files [17]. The latter is possible because near
baseline separation of the components present in the mixture
is possible. In addition, this sample permitted the use of tra-
ditional MS/MS or fragment ion database search algorithms
on the multiplexed data to allow the search results to be com-
pared and contrasted. For more complex mixtures, data de-

Figure 5. Ratio summed product ion intensity/precursor intensity as a function of the log value of the precursor intensity.
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pendent search algorithms, especially probability based
ones, can penalize the search results obtained from multi-
plexed fragmentation spectra because of the presence of
unrelated or contaminating products ions from coeluting
peptides.

Table 2 summarizes the search results for peptide and
protein identifications from the algorithm, as well as the
search results provided by other commercially and publicly

available MS/MS database search programs. Interestingly,
however, the crosscorrelation search algorithm appeared to be
less affected by the presence of unrelated or contaminating
products ions in the multiplexed fragmentation spectra. As
noted above, these database search programs are not designed
to search multiplexed fragmentation spectra. However, given
a relatively simple mixture, the results should permit a valid
comparison of the search results obtained. Furthermore,

Table 2. Evaluation of the ion accounting search algorithm with a standard four-protein mixture

No. of identified unique peptides (coverage (%))

Glycogen
phosphorylase

Serum
albumin

Alcohol
dehydrogenase

Enolase

Ion Accountinga)

Inj. 1
Inj. 2
Inj. 3
average

Mascotb)

Inj. 1
Inj. 2
Inj. 3
average

Sequestc)

Inj. 1
Inj. 2
Inj. 3
average

Scaffold (X! Tandem)d)

Inj. 1
Inj. 2
Inj. 3
average

ProteinLynx GlobalSERVERe)

Inj. 1
Inj. 2
Inj. 3
average

68 (68)
69 (72)
64 (64)
67 (67)

29 (37)/32 (44)
23 (26)/29 (38)
21 (23)/25 (31)
24 (29)/29 (38)

28 (37)/31 (42)
29 (35)/34 (43)
26 (32)/30 (39)
28 (35)/32 (41)

21 (27)/25 (38)
16 (19)/27 (37)
14 (14)/24 (35)
17 (20)/25 (37)

24 (29)/31 (44)
27 (31)/27 (34)
27 (30)/28 (35)
26 (30)/29 (37)

50 (55)
52 (57)
54 (60)
52 (58)

15 (27)/23 (43)
13 (23)/23 (41)
18 (30)/24 (44)
15 (27)/23 (43)

22 (44)/29 (56)
22 (38)/30 (51)
21 (37)/25 (50)
22 (40)/28 (52)

11 (21)/23 (46)
12 (23)/20 (39)
11 (19)/21 (42)
11 (21)/21 (42)

10 (17)/20 (34)
12 (21)/20 (32)
12 (19)/22 (37)
11 (19)/21 (34)

31 (55)
28 (58)
30 (56)
30 (56)

7 (21)/13 (40)
10 (28)/10 (35)
10 (29)/12 (34)
9 (26)/12 (36)

10 (30)/14 (47)
10 (29)/10 (37)
10 (29)/13 (37)
10 (29)/12 (40)

5 (16)/11 (40)
5 (18)/9 (34)
6 (16)/10 (32)
5 (17)/10 (35)

8 (21)/11 (41)
6 (19)/10 (37)
8 (22)/10 (32)
7 (21)/10 (37)

26 (50)
27 (52)
28 (49)
27 (50)

6 (17)/6 (15)
9 (24)/6 (18)
8 (20)/11 (26)
8 (20)/8 (20)

6 (20)/8 (27)
9 (25)/9 (23)
7 (22)/9 (25)
7 (22)/9 (25)

5 (14)/6 (23)
6 (20)/6 (20)
6 (17)/8 (24)
6 (17)/7 (22)

7 (21)/8 (22)
8 (20)/8 (20)
9 (21)/9 (22)
8 (21)/8 (21)

Search parameters: carbamidomethylation (C) fixed modification; acetylation (N-term), deamidation (NQ), and oxidation (M) variable
modifications; 1 missed cleavage.
Database: Swiss-Prot v53 appended with a peptide reversed version of the database.
The reported number of identified peptides and coverage for b), c), d), and e) preceding the solidus character represent the multiplexed
spectra search results; the numbers following the solidus character represent the results from the complementary data directed analysis
search results.
a) v2.3, peptide mass tolerance: automatic (approx. 9–10 ppm); fragment ion tolerance: automatic (approx. 20–23 ppm),�3 fragment ions/

peptide; �7 fragment ions/protein; �2 peptides/protein.
b) v2.2, peptide mass tolerance: 10 ppm; fragment ion tolerance: 0.05 Da, p,0.05; ion score cut-off: 20 homologue proteins not reported

(bold red identifications only); �2 peptides/protein.
c) v27.12, peptide mass tolerance: 10 ppm (postdatabase search applied); fragment ion tolerance: 0.05 Da (postdatabase search applied),

manual spectrum identification validation (Xcorr and DCn scores used as guidelines); �2 peptides/protein.
d) v01_07_00, peptide mass tolerance: 10 ppm; fragment ion tolerance: 0.05 Da, minimum protein probability: 99%; minimum peptide

probability: 95%; �2 peptides/protein.
e) v2.3, peptide mass tolerance: 10 ppm; fragment ion tolerance: 0.05 Da, minimum protein probability: 95%; automatic fragmentation

spectrum validation (�3 consecutive fragment ions) ; �2 peptides/protein.
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complementary DDA LC-MS/MS experiments were con-
ducted to confirm the authenticity of the identifications. The
experimental and identification details of the com-
plementary DDA LC-MS/MS experiments details are pro-
vided elsewhere [17]. The search parameters were kept as
similar as possible for all algorithms, and a reversed database
was used to estimate the rate of false positive identifications
[26, 38]. None of the search algorithms reported false posi-
tively identified proteins with the use of replication as an
identification filter. Note that this is not an evaluation of the
capabilities of the employed search algorithms for protein
identification from sequence (decoy) databases using MS
data.

The peptide assignments obtained from the replicate
injections indicate a high degree of reproducibility of the
peptides detected. The average chromatographic reproduci-
bility of the assigned peptides was better than 1.5% RSD,
indicating the usefulness of the retention time as an efficient
filter for modeling in the search algorithm, and possibly also
as a reference marker for the purpose of identifying the same
protein in future sample analyses. The average relative
retention time difference between the ion accounting identi-
fications and those obtained by the various applied search
algorithms for the DDA experiments was well within the
time associated to the parent precursors chromatographic
peak width at half-height, affirming correct identification.
The mass accuracy obtained for the assigned peptides was
within 10 ppm for the precursors and 20 ppm for the asso-
ciated fragment ions. The retention time difference between
precursor and assigned product ions was, in all instances,
better than 0.05 min.

A summed total of 455 redundant tryptic peptides were
identified to the four proteins from the triplicate analysis of the
sample. Of the 455 peptides, 103 (309 total) of the peptide
assignments were found in all three injections, with 48 (96
total) found in at least two out of three injections. This repre-
sents 405 out of the 455 peptide identifications replicating in
two out of three injections, equating to 89% identification re-
producibility. In general, the ion accounting algorithm identi-
fied more peptides and provided higher sequence coverage
than the other search algorithms tested. It may be concluded
that the ion accounting algorithm, which is specifically
designed to provide optimum results from multiplexed frag-
mentation spectra, succeeded in producing better results from
this type of data. It should be noted that the majority of the
peptide identifications were confirmed by independent DDA
analysis under identical chromatographic conditions [17].

3.3 Four-protein mixture in a complex biological

background

The same four proteins were spiked into a tryptic digest of
the cytosolic proteins of E. coli to test the ability of the peak
detection and search algorithms to extract correct informa-
tion regarding alignment of precursor and fragment ions in
a complex data set. A comprehensive overview of the LC-MS

acquisition method used to obtain the precursor and frag-
ment ion information of the constituent peptides is provided
elsewhere [17].

In summary, the majority of the peptides (.90%) from
the four proteins of interest added to the mixture were iden-
tified, despite the presence of the highly complex E. coli
background. The peptide assignments obtained from the
replicate injections to the four-protein spikes and also the E.
coli proteins, indicates a high degree of reproducibility of
peptide detection. In this experiment, the chromatographic
reproducibility of the assigned peptides was under 2% RSD.
In addition, the relative intensities of the peptides, to each of
the four proteins, were consistent with that observed when
analyzed without the E. coli background [17]. The consistent
relative ionization profiles of tryptic peptides to a protein is
not only a property that is utilized by the ion accounting al-
gorithm, but it can also aid in guiding the design and
implementation of a study for a particular set of marker
proteins. With a given ionization profile to a protein, it is
feasible to predict which peptides and fragment ions should
be identified within a sample, which can be subsequently
used as criteria to validate the presence of the protein(s) of
interest. The latter will be illustrated in more detail in the
next paragraph, where the same protein was identified at
various concentrations in different type of samples.

As with the simple protein mixture, the mass accuracy
obtained for the assigned peptides were within 10 ppm for
the precursors and 20 ppm for the associated fragment ions.
For this experiment, the retention time difference between
the precursor and assigned product ions was in all instances
better than 0.05 min. A summed total of 411 redundant
tryptic peptides were identified to the four proteins from the
triplicate analysis. Of the 411 peptides, 92 (276 total) of the
peptide assignments were found in all three injections with
41 (82 total) found in at least two out of three injections,
representing 358 out of the 411 peptide identifications. In
this case, there was 87% identification reproducibility. Sup-
porting Information Fig. S4 shows the fragmentation spec-
trum of one of the lower-to-medium scoring peptides identi-
fied to one of the four standard proteins, yeast alcohol dehy-
drogenase, in the four-protein mixture (top pane) and the
four-protein mixture spiked into the E. coli digest (bottom
pane). In both instances, the algorithm correctly identified
the precursor and product ions at the same chromatographic
elution time, in accordance with the retention time model,
and with the same ion precursor/fragment ion intensity dis-
tribution, again in agreement with the physicochemical
identification rules utilized by the search algorithm. The
spiked proteins of interest were either identified with very
low sequence coverage or not identified at all by the other
tested database search algorithms (data not shown). Addi-
tional product ion MS/MS experiments were conducted to
validate the peptide identifications that were not initially
identified by the other search algorithms. A comparative
overview in terms of the number of peptide identifications to
the four proteins in the complex E. coli background and the
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coverage compared to the simple mixture analysis is pro-
vided in Table 3. In addition to the four spiked proteins, more
than 400 E. coli proteins were identified with a single-di-
mension RP gradient separation in the complex mixture
analysis. More detail on these identifications is provided
elsewhere [17] and the last paragraph of this section.

3.4 Physicochemical properties of peptide and

proteins to aid complex mixture analysis

In an LC-MS experiment, the peptide and product ion spec-
tra obtained from the proteolytic peptides are independent of
their environment. Once digested, a protein provides,
depending on its molecular weight and concentration in a
mixture, a predictable set of precursor, and product ions. In
addition, the observed precursor and product ions should
conform to the physicochemical property predictions de-
scribed in the previous sections. Hence, the intensity dis-
tribution of the observed ions should also be predictable.
This was illustrated in the context of the simple four-protein
mixture in the presence and absence of the E. coli peptides.
The relative intensity distribution of the identified peptides
to each of the four spiked proteins was consistent between
the two samples, exhibiting a characteristic fingerprint at
both the precursor and product ion level. These results sug-
gest that these properties can be leveraged in the analyses of
other biological samples.

To illustrate this in more detail, a number of different
biological sources were analyzed, and the ionization behavior
of the peptides and product ions to a particular protein were
examined. This is demonstrated by the results shown in
Figs. 6a and b. Figure 6a shows the intensity distribution of

securely identified peptides of human glucose-regulating
protein GR78 in three different matrices, namely serum,
glioma tissue, and pituitary tissue. It can be observed that the
intrasample intensity distribution is consistent, although
there are a few minor reversals of intensity order from sam-
ple to sample. It has been previously shown that the sum-
med intensity of the top three most intense precursor ions to
a given protein is proportional to its molar amount and that
this relationship can be used to estimate the quantity of pro-
teins in a complex sample [42]. The search algorithm imple-
ments this approach and provides an estimate of the absolute
quantity of all identified proteins in a given sample. The
samples were spiked with a known concentration of yeast
alcohol dehydrogenase digest, allowing determination of the
absolute concentration of the protein in each sample, 60, 12,
and 15 fmol, respectively. These molar amounts agree well
with the intensity ratios for the identified peptides in each
sample, thereby providing additional evidence that the pep-
tides have been properly assigned to the correct protein
sequence in each sample.

A similar trend is seen for the identified fragment ions,
illustrated in Fig. 6b. The left pane shows the product ion
spectrum of the T6 tryptic peptide and the right pane the
spectrum of the T5 tryptic fragment of glucose-regulating
protein GR78. In both instances, the relative intensities of
the product ions are consistent and the ratios of product ion
intensities track those of the precursors. Note that the time-
aligned background ions are different in each elevated-
energy MS fragmentation spectrum. The only ions in com-
mon are the identified y and b peptide sequence ions. This is
to be expected, since the data were obtained from three dif-
ferent samples, prepared at different times, and acquired on

Table 3. Evaluation of the ion accounting search algorithm with a standard four-protein mixture spike into a complex biological back-
ground

Ion Accountinga) No. of identified unique peptides (coverage (%))

Glycogen phosphorylase Serum albumin Alcohol dehydrogenase Enolase

Inj. 1 67 (64) 48 (54) 26 (54) 22 (44)
Inj. 2 62 (60) 45 (51) 25 (57) 24 (48)
Inj. 3 66 (63) 47 (52) 27 (54) 23 (47)
Average 65 (62) 47 (53) 24 (52) 23 (46)

Peptide and coverage ratio

No. of peptides ratiob) 0.97 0.94 0.88 0.85
Coverage ratioc) 0.93 0.91 0.96 0.92

Search parameters: carbamidomethylation (C) fixed modification; acetylation (N-term), deamidation (NQ), and oxidation (M) variable
modifications.
Database: E. coli K12 species-specific data to which the sequence of the four proteins of interest was added and appended with a peptide
reversed version of the database.
a) Peptide mass tolerance: automatic (approx. 9–10 ppm); fragment ion tolerance: automatic (approx. 20–23 ppm), �3 fragment ions/

peptide; � 7 fragment ions/protein; � 2 peptides/protein.
b) No. of peptides identified to the protein of interest in the complex biological background/# peptides identified to the protein of interest

in the four-protein mixture.
c) Coverage of the protein of interest in the complex biological background/coverage of the protein of interest in the four-protein mixture.
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Figure 6. Peptide precursor intensity distribution (a) and fragmentation spectrum product ion intensity distribution of tryptic fragments T6
and T5 (b) of 78 kDa glucose-regulated protein for the digests of serum, glioma, and pituitary tissue, respectively. Fragment ion color
legend: red, y ion; blue, b ion; green, immonium ion or neutral loss of NH3 or H2O; grey, not identified; magenta, fragment ion assigned to a
coeluting peptide. Serum digestion was performed as described previously [73] and the digestion of glioma and pituitary tissue with minor
modifications [74].
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different instruments. While there can be hundreds of prod-
uct ions in a single elevated-energy MS fragment ion spec-
trum, the algorithm clearly identified the same peptides to
the same protein at similar retention times and with similar
ionization distributions, at both the precursor and product
ion levels. In addition, the product ions retention time apices
were calculated to be within 600 ms of that of the parent
precursors and their masses were within 20 ppm of those of
the corresponding fragment ions in the database. The com-
bination of time-resolved precursor and fragments and mass
accuracy enhances the value of this type of data and database
search results for populating bioinformatics pipelines, for
the purposes of archiving the information into a database
and using it to intelligently interrogate a biological sample.

3.5 Sensitivity of the search algorithm for the

identification of multiplexed fragmentation data

The identification detection sensitivity of the algorithm was
assessed by the analysis and quantification of a low-abundant

marker protein in affinity-depleted human serum. The qual-
itative examples shown in the previous paragraphs were
either from standard proteins alone or the same proteins
spiked into a biological sample with a relatively small dy-
namic range compared to for instance human serum. The
protein of interest in this example is a human form of chit-
inase, which is a marker for glucocerebrosidase deficiency
that is in clinical use [75]. This protein has been studied in
great detail in previous work by means of data independent
LC-MS acquisitions [73] and consequently allows for the
thorough evaluation of the specificity of the search algorithm
in terms of time alignment of the precursor and fragment
ions in the presence of a large number of other highly abun-
dant contaminant background ions generated during multi-
plexed fragmentation.

Figure 7 shows the identification of the T25 tryptic frag-
ment of chitotriosidase in its native form in post-treatment
affinity-depleted human serum and that of a recombinant
human form. Similar to the characteristics of the peptide and
protein identification described in the previous paragraph,

Figure 7. Product ion spectra of the T25 tryptic fragment of chitotriosidase in native depleted human pretreatment serum (top) and a
recombinant human form (bottom). See reference [73] for sample preparation and analysis details. Fragment ion color legend: red, y ion;
blue, b ion; green, immonium ion or neutral loss of NH3 or H2O; gray, not identified; magenta, fragment ion assigned to a coeluting peptide.
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the only commonly identified ions between the native and
the recombinant peptide are those that arise from sequence
related ions. The estimated concentration of chitotriosidase
using yeast alcohol enolase as the internal standard for
absolute quantification was 0.99 6 0.16 fmol/mL (n = 3)
injected on column for this particular pretreatment sample.
This measured protein marker concentration can be corre-
lated to a serum enzyme activity of 15 600 6 2 500 nmol/
mL/h. The enzyme activity was also measured directly from
undepleted serum by means of a biochemical substrate assay
[75] and was found to be equal to 15 900 nmol/mL/h 6 5%.
The chitotriosidase level measured with the two independent
methods was found to be in the same order of magnitude.

The relative retention time difference of the T25 peptide
of the native and the recombinant peptide was merely
0.06 min, which further validates the identification. The
observed S/N of the identified product ions suggest that sub
fmol identification is feasible with the proposed search algo-
rithm in conjunction with data independent acquisition.
This example also illustrates the correct alignment of frag-
ment ions with the precursor. The average retention time
difference between the precursor and the identified fragment
ions was 0.0074 min, which is well within the time frame of
a single scan. A summary of the identified proteins, peptides,
and fragments ions and the relative and absolute proteins
amounts of all of the identified serum proteins has been
deposited in the Tranche pipeline and can be accessed with
identification number 2178 (http://www.proteome-
commons.org/dev/dfs/). The absolute amounts of all the
identified serum proteins were also determined using yeast
enolase as the internal standard and it was found that 78.6%
of the detected protein mass could be accounted for.

The consistency of the fragmentation behavior of pep-
tides generated by means of data independent acquisitions
and analyzed by the ion accounting search algorithm allow
for the prediction of MRM transitions for absolute quantifi-
cation experiments with triple quadrupole mass spectrom-
eters using isotopically labeled internal standards. T25 and
T37 were found to be the most suitable candidate peptides of
this particular protein for this purpose. N-terminal 13C

labeled versions of the two peptides were synthesized and
used as internal standards. Both peptides, with two MRM
transitions per peptide (T25: 586.2 ? 652.3 and
586.2 ? 723.3; T37: 502.2 ? 630.4 and 502.2 ? 652.3),
were used to calculate the concentration of the protein in af-
finity-depleted serum, which was found to be 2.8 6 0.2 mg/
mL. This concentration measurement can also be correlated
to a serum enzyme activity and equals 11 200 6 800 nmol/
mL/h.

3.6 Specificity

The specificity of the search algorithm was tested and eval-
uated by searching the processed multiplexed fragmenta-
tion data from the four-protein mixture added to the tryptic
digest of the cytosolic proteins of E. coli against several
microbial databases: Bacillus subtilis, Mycobacterium bovis,
Saccharomyces cerevisiae, Brugia malayi, Pseudomonas aerugi-
nosa, Wolbachia sp. and E. coli. The sequences of the four
standard proteins and porcine trypsin were appended to
each database, as well as a random version of the entire
database. The data were processed and searched with
default parameters and an initially allowed 4% false positive
rate.

The results, and all of the associated search parameters
and criteria, are summarized in Table 4. In all instances, the
four internal standard proteins were identified with similar
peptide complements, but only a search of the E. coli data-
base returned a significant number of the 411 bacterial pro-
tein identifications. No more than 18 bacterial proteins,
approximating the expected false positive rate, were returned
from the searches against any other database. Several of
these proteins are homologues of E. coli proteins, with iden-
tical tryptic peptides. As such, these identifications cannot be
regarded as false, which demonstrates that ion accounting
database searches are highly specific. An overview of the
identified E. coli proteins is provided in Supporting Infor-
mation Table S2. From the triplicate experiments, a summed
total of 16 679 peptides were assigned to E. coli proteins of
which 64% replicated in at least two out of the three injec-

Table 4. Identification specificity of closely related, species-specific proteomes (spiked with a four-protein digest and trypsin) in terms of
the number of identified proteins and accounted on-column loading

Species specific
database

No. of proteins
identified

No. of internal standards
proteins identifieda)

Trypsin identified Accounted mass (%)

E. coli 411 4 Yes 91
B. subtilis 5 4 Yes 4.5
M. bovis 7 4 Yes 4.8
S. cerevisiae 1 4 Yes 4.0
B. malayi 18 4 Yes 6.1
P. aeruginosa 4 4 Yes 4.4
Wolbachia 6 4 Yes 4.7

a) Standard proteins constitute approximately for 4% of the total (accountable) mass.
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tions. The peptides were matched to a summed total of 1347
proteins. Of the identified proteins, 329 (987 total) were
identified in all three injections with 82 (164 total) found in
at least two out of three injections, representing 1151 out of
the 1347 identifications. In other words, the reproducibility
of protein identification was 84%.

Since the applied scanning method generates an inven-
tory of peptide detections with their mass, retention time,
and corresponding intensities, an analysis can be performed
to determine what fraction of the overall detected intensity
has been identified. In the case of the E. coli proteins, 76% of
the total detected intensity has been accounted for by the
corresponding peptide assignments from the database
search algorithm. Estimating the amount of all 411 E. coli
using the recently published absolute quantification rules
[42] accounted for 96% of the mass of the analyzed sample
using yeast alcohol dehydrogenase as the internal standard
for absolute quantification.

Receiver operating characteristic (ROC) plots were gen-
erated on the three replicate injections of the four standard
proteins spiked into the digested E. coli cytosolic lysate to
further illustrate the specificity of the search algorithm.
ROC plots are graphical illustrations of the true positive rate
versus the false positive rate. A primary purpose of an ROC
plot is to depict a binary systems level of sensitivity and
specificity. Figure 8 illustrates a signal plot with each injec-
tion plotted. The y-axis illustrates the true positive rate
whereby the x-axis represents that of the false positive rate
as a percentage of the total number of identifications. A

false positive represents a random protein identification. As
can be seen from the results presented in Fig. 8, the algo-
rithm does not produce a false positive identification until
approximately 80% of the proteins have been identified. In
the case of the spiked E. coli samples, this correlates to ap-
proximately the 330th protein out of a total of 411 identifi-
cations. The 330th protein is marked by a red dot in Sup-
porting Information Fig. S5.

Supporting Information Fig. S5 illustrates the dynamic
range of the identified proteins. The y-axis represents the on
column protein concentration for each of the 411 proteins.
The x-axis depicts the identified proteins ranked by decreas-
ing on column concentration. Moreover, the first 330 identi-
fied proteins account for 436 ng of the total reported 455 ng
(approximately 96%). Hence, false positive identifications
only occur in the lowest order of magnitude of detection. The
concentrations of the identified proteins in the lower order of
detection are typically in the low fmol/subfmol range. Iden-
tifications at low concentration are challenged by the fact that
the number of peptides that can be identified to a protein is
directly proportional to size and abundance. Moreover, the
average protein molecular weight for the first 330 protein
identification was found to be around 40 kDa and of the last
81 proteins around 42 kDa. This emphasizes that the intact
protein molecular weight distribution of the lowest order of
magnitude detected was not significantly different to that of
the first two orders. This is anticipated since the identified
proteins should, to a large extent, follow the intact protein
molecular weight distribution of the examined proteome.

Figure 8. ROC curves for three replicate injections of a four-protein mixture spiked into the cytosolic content of E. coli.
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It has also been shown that the number of higher ioniz-
ing peptides is directly proportional to the intact molecular
weight of a protein. The number of detectable peptides at the
detection limits is however limited not only by the number of
peptides but also by the ability of the system to reproducibly
detect the ions. The validity of the lower concentration level
protein identifications was confirmed by replication (repro-
ducibility). Each of the reported 411 proteins was identified
in a minimum of 2 out of 3 replicate injections of the same
sample. Moreover, the data presented in section 3.4 illus-
trates that for a protein that was identified at three different
concentrations and in three different sample types that the
majority of the peptides identified at the lower concentration
regions were the better ionizing peptides for the most con-
centrated sample. In addition, the identified product ions as
well as the fragmentation patterns were very reproducible,
although the background ions were significantly different
between the different sample matrices.

4 Concluding remarks

A search algorithm has been described for the analysis of
data independent, multiplexed fragmentation data, to offer
more comprehensive characterization of complex protein
samples than that of traditional MS/MS-based algorithms.
Novel aspects of the algorithm for identification and valida-
tion have been presented utilizing the physicochemical
properties of peptides and proteins in both the liquid and gas
phase. A number of these properties have been described in
detail and indicated how they can be utilized in search strat-
egies to improve the specificity and accuracy of peptide
identifications. The combination of these properties provides
a very selective mechanism to assign product ions from
multiplexed fragmentation spectra to precursor ions. The
presented iterative search process, utilizing a subset database
search strategy and a number of precursor and product ion
depletion iterations, further increases the sensitivity of the
overall approach, without compromising specificity. This
approach also holds significant promise as a facile means for
identifying any number of different chemical and PTMs to
peptides emanating from those securely identified proteins.

The search algorithm was successfully tested and vali-
dated by a comprehensive comparative analysis of the search
results of well-characterized samples with a selection of
alternative current search algorithms. The results from this
comparison highlight the advantages of the search algorithm
in conjunction with a data independent acquired LC-MSE

strategy over that of other MS/MS-based search algorithms
combined with serially acquired LC-MS/MS data. The
enhanced duty cycle is apparent from the overall increase in
protein and peptide coverage across the entire protein mo-
lecular weight range. Of those peptides that were found in
common to the other search algorithms, the same fragment
ions were accounted for in both sets of results. The results
described in this work, as well as the accompanying manu-

script that details on the detection, correlation, and compar-
ison of peptide precursor and products ions from data inde-
pendent LC-MS with data dependent LC-MS/MS experi-
ments [17], indicate that the additional peptides which are
identified from the alternate scanning LC-MSE analysis span
a wider dynamic range than those obtained from an LC-MS/
MS analysis of the same sample.

The qualitative search results have been presented, for
both a complex samples and a (surrogate) clinical marker
experiment, illustrate that the multiplexed fragmentation
spectra, and their subsequent identification, are consistent
and as such validate the qualitative identification capabilities
of the presented search algorithm. The estimation of abso-
lute quantification, from the search algorithm, was used to
assess the concentration of certain proteins of interest. In the
instance of the complex sample analysis, the intensity dis-
tribution of the identified peptides was used to estimate the
amount and concentration of all proteins identified and a
number of different proteins across different investigated
sample matrices. The quantitative results of the clinical
experiment were validated by two independent quantitative
analytical techniques, which both confirmed the bioinfor-
matically determined amount of the identified marker. The
specificity and selectivity of the algorithm has been demon-
strated by searching the data from a specific organism
against species-specific databases closely related to the
organism of interest; only the use of an appropriate species-
specific database lead to correct identifications, proving
selectivity. Lastly, the presented database search results also
highlights the reproducible nature of the algorithm, which is
afforded by the use of a multiplexed accurate mass data
acquisition technique that presents very reproducible and
consistent precursor and product ion maps, combined with a
subtractive search algorithm designed specifically to deal
with this data at high levels of sensitivity and specificity. This
allows for accounting of the data, both in terms of observed
intensity and mass.
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